Assessment of quality of Thai wheat drinking straws produced from different wheat varieties

Main Article Content

Hathaichanok Pattaampan
Surakiat Khumphanalaisathit
Kriangsuk Luechai
Manoch Khumpanalasatit
Suraphon Chaiwongsar

Abstract

Wheat cultivation in Thailand has increased, especially bread wheat, durum wheat, and triticale, owing to a surge in local demand for grain and stalks to produce drinking straws. This study aimed to assess the quality of wheat drinking straws manufactured by a community enterprise in Lampang Province, Thailand, in accordance with the community product standard for plant-based straws (CPS. 1558/2020), a pertinent regulation for plant-based straws in Thailand. This study assessed the quality of three varieties of Thai wheat drinking straws: Fang 60, Durum No. 31, and Triticale No. 23. All three varieties met the necessary criteria, including their general appearance, odor, shape retention, moisture content, and microbial contamination levels, thereby confirming their adherence to the established standards in Thailand. The customer's evaluation of wheat straw regarding odor, color, shape, and suction quality revealed positive feedback. Triticale No. 23 and Fang 60 straws garnered the highest overall satisfaction ratings, closely followed by Durum No. 31 straws, which also attained high satisfaction ratings. This study demonstrates that temperate grain stalks are suitable for the manufacture of drinking straws. It also ensures customer acceptance and quality, hence guaranteeing the market potential in the future.

Article Details

How to Cite
Pattaampan, H., Khumphanalaisathit, S., Luechai, K., Khumpanalasatit, M., & Chaiwongsar, S. (2025). Assessment of quality of Thai wheat drinking straws produced from different wheat varieties. Journal of Science and Agricultural Technology, 5(2), 39–47. https://doi.org/10.14456/jsat.2024.11
Section
Research Article

References

Alam, N., Maniruzzaman, M.D., Sikder, M.D., Karim, A., Sheikh, M.D., and Amin, R. 2019. Antioxidant and antityrosinase activities of milky white mushroom. Bangladesh J. Bot. 48(4): 1065-1073.

AOAC. 1990. Official methods of analysis. Vol. II, 15th ed. Sec.985.29. Association of Official Analytical Chemists. Virginia.

Akiyama, M., Tatsuzaki, M., Michishita, T., Ichiki, T., Sumi, M., Ikeda, M., Araki, T., and Sagara, Y. 2012. Package design of ready-to-drink coffee beverages based on food Kansei model-effects of straw and cognition terms on consumer’s pleasantness. J. Food Bioprocess Technol. 5: 1924-1938. https://doi.org/10.1007/s11947-011-0527-5.

Bibi, F., Qaisrani, S. N., Ahmad, A. N., Akhtar, M., Khan, B. N., and Ali, Z. 2015. Occurrence of Salmonella in freshwater fishes: A review. J. Anim. Plant Sci. 25(3): 303-310.

Biggs, L., Juravle, G., and Spence, C. 2016. Haptic exploration of plate ware alters the perceived texture and taste of food. J. Food Qual. Prefer. 50: 129-134. https://doi.org/10.1016/j.foodqual.2016.02.007.

Boyle, K., and Örmeci, B. 2020. Microplastics and nanoplastics in the freshwater and terrestrial environment: A review. Water. 12(9): 2633. https://doi.org/10.3390/w12092633.

Chaiwongsar, S. 2023. Development of temperate cereals for production in highland areas in northern Thailand. The research project is funded by the Agricultural Research Development Agency (Public Organization), Fiscal Year 2023.

Cheng, D., Shenxue, J., and Zhang, Q. 2013. Mould resistance of Moso bamboo treated by two-step heat treatment with different aqueous solutions. Eur. J. Wood Wood Prod. 71(1): 143-145. https://doi.org/10.1007/s00107-012-0654-3.

Ehuwa, O., Jaiswal, A. K., and Jaiswal, S. 2021. Salmonella, food safety and food handling practices. Foods. 10(5): 907. https://doi.org/10.3390/foods10050907.

Ghazali, J. M., Halim, M. H. A. A., Norazman, N. B., and Azani, N. A. A. 2021. Edible-base drinking straw coated of carnauba wax at low rate of absorption in banning plastic straw. J. MARI. 2(2): 166-174.

Gozzi, M., Blandino, M., Bruni, R., Capo, L., Righetti, L., and Dall’Asta, C. 2024. Mycotoxin occurrence in kernels and straws of wheat, barley, and tritordeum. J. Mycotoxin Res. 40(1): 203-210. https://doi.org/10.1007/s12550-024-00521-w.

Guggenberger, M., Sumerskii, I., Rosenau, T., Böhmdorfer, S., and Potthast, A.2023. The return of the smell: The instability of lignin’s odor. J. ACS Sustain. Chem. Eng. 11(2): 689-695. https://doi.org/10.1021/acssuschemeng. 2c05644.

Gutierrez, J. N., Royals, A. W., Jameel, H., Venditti, R. A., and Pal, L. 2019. Evaluation of paper straws versus plastic straws: Development of a methodology for testing and understanding challenges for paper straws. J. BioResources. 14(4): 8345-8363. https://doi.org/10.15376/biores.14.4. 8345-8363.

Hamad, S. H. 2012. Factors affecting the growth of microorganisms in food. Progress in food preservation. 405-427. https://doi.org/10.1002/9781119962045.ch20.

Hussain, M. I., Syed, Q. A., Khattak, M. N. K., Hafez, B., Reigosa, M. J., and El-Keblawy, A. 2019. Natural product coumarins: biological and pharmacological perspectives. J. Biol. 74: 863-888. https://doi.org/10.2478/s11756-019-00242-x.

Isangedighi, I. A., David, G. S., and Obot, O. I. 2020. Plastic waste in the aquatic environment: impacts and management. In: Leo, M.L., and Nollet, K. S. S. (ed) Analysis of nanoplastics and microplastics in food. CRC Press, Boca Raton. p. 15-43.

ISO 6579-1:2017. 2017. Microbiology of the food chain - Horizontal method for the detection enumeration and serotyping of Salmonella, Available Source: https://www. iso.org/standard/56712.html.

Jiang, D., An, P., Cui, S., Sun, S., Zhang, J., and Tuo, T. 2020. Effect of modification methods of wheat straw fibers on water absorbency and mechanical properties of wheat straw fiber cement-based composites. J. Adv. Mater. Sci. Eng. 2020(1): 5031025. https://doi.org/10.1155/2020/5031025.

Jonsson, A., Andersson, K., Stelick, A., and Dando, R. 2021. An evaluation of alternative biodegradable and reusable drinking straws as alternatives to single‐use plastic. J. Food Sci. 86(7): 32193227. https://doi.org/10.1111/1750-3841. 15783.

Kwak, H., Kim, H., Park, S. A., Lee, M., Jang, M., Park, S. B., Hwang, S. Y., Kim, H. J., Jeon, H., Koo, J. M., Park, J., and Oh, D. X. 2023. Biodegradable, water‐resistant, anti‐fizzing, polyester nanocellulose composite paper straws. J. Adv. Sci. 10(1): 2205554. https://doi.org/10.1002/advs. 202205554.

Larkin, E. A., Carman, R. J., Krakauer, T., and Stiles, B. G. 2009. Staphylococcus aureus: the toxic presence of a pathogen extraordinaire. J. Curr. Med. Chem. 16(30): 40034019. https://doi.org/10.2174/092986709789352321.

Li, R., Feng, Y., Gong, R. H., and Soutis, C. 2023. A biodegradable stereo-complexed poly (lactic acid) drinking straw of high heat resistance and performance. J. Mater. 16(6): 2438. https://doi.org/10.3390/ma16062438.

Likert, R. 1967. The method of constructing and attitude scale reading. In: Fishbeic, M. (ed) Attitude theory and measurement. Wiley & Son, New York. p. 90-95.

Lin, H. M., Lo, H. Y., and Liao, Y. S. 2013. More than just a utensil: The influence of drinking straw size on perceived consumption. Mark. Lett. 24: 381-386. https://doi.org/ 10.1007/ s11002-013-9225-6.

Loh, T. W., and Nguyen, K. T. 2023. Durability and fire resistance of compressed wheat-straw (triticum aestivum) panels subjected to real-world aging environments. J. Ind. Crop. Prod. 203: 117141. https://doi.org/10.1016/j.indcrop.2023. 117141.

Luan, Y., Huang, B., Chen, L., Wang, X., Ma, Y., Yin, M., Song, Y., Liu, H., Ma, X., Zhang, X., Sun, F., Fang, C., and Fei, B. 2023. High-performance, low-cost, chemical-free, and reusable bamboo drinking straw: An all-natural substitute for plastic straws. J. Ind. Crop. Prod. 200: 116829. https://doi.org/10.1016/j.indcrop.2023.116829.

Ministry of Industry. 2020. Community product standards for straws from plants. (CPS.1558/2020). Community Industrial Development Office, Bangkok.

Muneer, F., Azam, M. H., Zubair, M., Farooq, T., Ibrahim, M., Rasul, I., Afzal, M., Ahmad, A., and Nadeem, H. 2021. Remediation of water pollution by plastics. In: Inamuddin, Ahamed, M.I., Lichtfouse, E. (eds) Water pollution and remediation: Organic pollutants. Environ. Chem. Sustain. World. 54 Springer, Cham. https://doi.org/10.1007/978-3-030-52395-4_3.

Qiu, N., Sha, M., and Xu, X. 2022. Evaluation and future development direction of paper straw and plastic straw. In: IOP Conference Series: Earth and Environmental Science. 1011(1): 012029. IOP Publishing. https://doi.org/10.1088/ 1755-1315/1011/1/012029.

Ruan, H., Fransen, S. C., Carter, A. H., Tao, H., and Yang, B. 2019. Selecting winter wheat straw for cellulosic ethanol production in the Pacific Northwest, USA. J. Biomass Bioenergy. 123: 59-69. https://doi.org/10.1016/j.biombioe. 2019.02.012.

Sperber, W.H., Moorman, M.A., and Freier, T.A. 2015. Cultural methods for the enrichment and isolation of microorganisms. In: Salfinger, Y., and Tortorello, M. L. (eds) Compendium of methods for the microbiological examination of foods. (5th ed) Am. Public Health Assoc., Washington, DC. https://doi.org/10.2105/MBEF.0222.010.

Tarani, E., and Chrissafis. K. 2024. A comparative study of drinking straws made from natural resources: structural and morphological characterization Int. J. Environ. Sci. Technol. 21(4):3943-3956. https://doi.org/10.1007/s 13762-023-05256-2.

Thai Encyclopedia Project for Youth Volume 17. 1993. Wheat. Available Source: https://kanchanapisek.or.th/sub/book/ book.php?book=17&chap=10&page=chap10.htm.

U.S. Food and Drug Administration. 2019. BAM Chapter 12: Staphylococcus aureus. Available Source: https://www. fda.gov/food/laboratory-methods-food/bam-chapter-12-staphylococcus-aureus.

Wu, Z., Huang, D., Wei, W., Wang, W., Wang, X. A., Wei, Q., Niu, M., Lin, M., Rao, J., and Xie, Y. 2019. Mesoporous aluminosilicate improves mildew resistance of bamboo scrimber with CuBP anti-mildew agents. J. Clean. Prod. 209: 273-282. https://doi.org/10.1016/j.jclepro. 2018.10. 168.

Yang, H.B., Liu, Z.X., Yin, C.H., Han, Z.M., Guan, Q.F., Zhao, Y.X., Ling, Z.C., Liu, H.C., Yang, K.P., Sun, W.B., and Yu, S. H. 2022. Edible, ultrastrong, and microplastic‐free bacterial cellulose‐based straws by biosynthesis. J. Adv. Funct. Mater. 32(15): 2111713. https://doi.org/10 1002/ adfm.202111713.

Zhang, L., Larsson, A., Moldin, A., and Edlund. U. 2022. Comparison of lignin distribution, structure, and morphology in wheat straw and wood. J. Ind. Crop. Prod. 187: 115432. https://doi.org/10.1016/j.indcrop.2022. 115432.

Zhang, S., Han, S., Gao, J., Yu, X., and Hu, S. 2023. Low-temperature corn straw-degrading bacterial agent and moisture effects on indigenous microbes. J. Appl. Microbiol. Biotechnol. 107(16): 52415255. https://doi. org/10.1007/s00253-023-12644-8.