Optimizing row spacing for dual-purpose wheat cultivation in Thailand

Main Article Content

Surakiat Khumphanalaisathit
Hathaichanok Pattaampan
Kriangsuk Luechai
Manoch Khumpanalasatit
Suraphon Chaiwongsar

Abstract

Wheat production in Thailand is increasing due to rising domestic demand. Dual-purpose wheat cultivation, aimed at producing grain and stems for drinking straw manufacturing, has gained attention to enhance farmer income and promote sustainable practices.  This study evaluated the effect of row spacing on yield potential (YP) yield components and stem qualities, including plant number (PN), spike number (SN), spike length (SL), thousand-grain weight (TGW), and stem qualities, specifically the diameter of the second internode (D2), length of the second internode (L2), stem hardness (Hs), and straw yield (SY) for drinking straw production. The experiment employed a randomized complete block design (RCBD) with three replications in 8 square meters plot sizes. Four-row spacings were tested: 15, 20 (conventional), 25, and 35 cm, with a seed rate of 125 kg/ha The findings indicated that row spacings of 20 cm and 25 cm yielded the highest values for YP (5,044,888 kg/ha), SN (309-308 spikes/m2), TGW (37.42-37.64 g), D2 (3.57-3.66 mm), and SY (1,580,000-1,740,000 straws/rai). These spacings also received the highest ratings in a farmer satisfaction survey. The findings suggest that 20-25 cm row spacings are optimal for dual-purpose wheat cultivation in Thailand, balancing grain yield and stem quality for sustainable production.

Article Details

How to Cite
Khumphanalaisathit, S., Pattaampan, H., Luechai, K., Khumpanalasatit, M., & Chaiwongsar, S. (2025). Optimizing row spacing for dual-purpose wheat cultivation in Thailand. Journal of Science and Agricultural Technology, 5(2), 26–33. https://doi.org/10.14456/jsat.2024.9
Section
Research Article
Author Biographies

Surakiat Khumphanalaisathit

Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology  Lanna Lampang, Lampang 52000, Thailand

Hathaichanok Pattaampan

Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand

Kriangsuk Luechai

Agricultural Technology and Innovation Management Unit, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand

Manoch Khumpanalasatit

Program in Plant Science, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand

Suraphon Chaiwongsar

2Agricultural Technology and Innovation Management Unit, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand

3Program in Plant Science, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand

References

Abboye, A., D., and Teto, A., M. 2020. Response of seed rates and row spacing on growth, yield, and yield components of wheat (Triticum aestivum L.) crop. J. Nat. Sci. Res. 10(3): 28-36.

Chaiwongsar, S., Insalud, N., Boonmee, N., Pradip, N., Punyatuy, S., Manakoon, T., Wechkama, K., Boontawaong, O. and Narueban, S. 2019. The development of temperate cereal production as post-rice paddy crop for the upper northern farmers: A case study of wheat. Research report. National Research Council of Thailand, Bangkok. (in Thai)

Chaiwongsar, S., Insalud, N., Boonmee, N., Pradip, N., Punyatuy, S., Manakoon, T., Wechkama, K., Boontawaong, O., and Narueban, S. 2020. Development of the Lanna temperate grain center for grassroots economic development in the northern region: Research report, National Research Council of Thailand, Bangkok. (in Thai)

Chen, S., Zhang, X., Sun, H., Ren, T., and Wang, Y. 2010. Effects of winter wheat row spacing on evapotranspiration, grain yield, and water use efficiency. Agric. Water Manag. 97(8): 1126–1132.

Deressa, H., Dechassa, N., Woyema, A. and Fana, G. 2013. Seeding rate and genotype effects on agronomic performance and grain protein content of durum wheat (Triticum turgidum L. var. durum) in South Eastern Ethiopia. AJFAND. 13(3): 7693-7710.

Farhad, M., Kumar, U., Tomar, V., Bhati, P., Navaneetha, K. K. J., Mustarin, K. E., Barek, V., Brestic, M. and Hossain, A. 2023. Heat stress in wheat: a global challenge to feed billions in the current era of the changing climate. Front. sustain. food syst. 7(4): 1-24.

Han, J., Wang, Z., Wu, X., Xia, J., Wang, L., Wang, Z. and Zhang, Y. 2024. Deciphering high-temperature-induced lignin biosynthesis in wheat through comprehensive transcriptome analysis. Plants. 13(13): 1832-1854.

Hussian, M., Mehmood, Z., Kha, M. B., Farooq, S., Lee, D.-J. and Farooq, M. 2012. Narrow row spacing ensures higher productivity of low tillering wheat cultivars. J. Agric. Biol. 14(30): 413-418.

Hussain, N., Yasmeen, A., Muhammad, A. and Hamid, N. 2014. Exploring the role of row spacing in yield important of wheat cultivars. J. Agri. Res. 51(1): 25-31.

Jaenisch, B. R., Munaro, L. B., Krishna Jagadish S. V. and Lollato, R. P. 2022. Modulation of wheat yield components in response to management intensification to reduce yield gaps. Plant Sci. 13(5): 1-18.

Jiang, D., An, P., Cui, S., Sun, S., Zhang, J. and Tuo, T. 2020. Effect of modification methods of wheat straw fibers on water absorbency and mechanical properties of wheat straw fiber cement-based composites. Adv. Mater. Sci. Eng. 2020(1): 1-14.

Johnson, A., Andersson, K.Stelick, A. and Dando, R. 2021.An evaluation of alternative biodegradable and reusable drinking straws as alternatives to single-use plastic. J. Food Sci. 86(7): 3219-3227.

Koppensteiner, L. J., Hans-Peter, K., Hans-Peter, P., Barta, N., Euteneuer, P., Bernas, J., Klimek-Kopyra, A., Gronauer, A. and Neugschwandtner, R. W. 2022. Yield and yield components of facultative wheat are affected by sowing time, nitrogen fertilization and environment. Eur. J. Agron. 140(2022): 126591, ISSN 1161-0301.

Kuai, J., Sun, Y.Y., Zhou, M., Zhang, P.P., Zuo, Q.S., Wu, J.S. and Zhou, G.S. 2016. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res. 199(1): 89–98.

Lamba, K., Mukesh, K., Vikram, S., Lakshmi C., Rajat S., Shikha, Y. and Dalal, M. S. 2023. Heat stress tolerance indices for identification of the heat tolerant wheat genotypes. Sci. Rep. (6): 1-13.

Land Development Department. 2009. Evaluation of soil properties for agriculture cropping, Lampang, Thailand. Report of evaluation of soil properties for agriculture cropping. Land Development Department, Bangkok.

Land Development Department. 2017. Soil analysis sampling for agriculture cropping. Land Development Department, Bangkok. (in Thai)

Likert, R. 1967. The method of constructing and attitude scale, in attitude theory and measurement. Wiley & Son, New York.

Mekonnen, A. 2017. Effects of seeding rate and row spacing on yield and yield components of bread wheat (Triticum Aestivum L.) in Gozamin district, East Gojam zone, Ethiopia. J. Bio, Agri. and Health. 7(4): 2224-3208.

Milan, K. L., Tiwari, R.K., Gahlaut, V., Mangal, V., Kumar, A., Madan, P. S., Paul, V., Kumar, S., Brajesh, S. and Zinta, G. 2022 Physiological and molecular insights on wheat responses to heat stress. Plant Cell Rep. 41(3): 501-518.

Mohammadi, M., Sharifi, P., Karimizadeh, R. and Shefazadeh, M. K. 2012. Relationships between grain yield and yield components in bread wheat under different water availability (dryland and supplemental irrigation conditions). Not. Bot. Horti Agrobot. Cluj-Na. 40(1): 195-200.

Munsif, F., Arif, M., Khan, A., Akhtar, K., Ali, K., Vincevica-Gaile, Z. and Wei, F. 2021. Dual-purpose wheat technology: A tool for ensuring food security and livestock sustainability in cereal-based cropping pattern. Arch. Agron. Soil Sci. 67(5): 1889-1900.

Otteson, B.N., Mergoum, M. and Ransom, J.K. 2007. Seeding rate and nitrogen management effect on spring wheat yield and yield components. Agron. J. 99(6): 1615-1621.

Padam, B. P. and R. P. Mukti. 2020. Heat stress effects and tolerance in wheat: A review. J. Biol. Today's World. 9(4): 217-223.

Panday, U.S., Shrestha, N., Maharjan, S., A. Pratihast, K., Kundan, S., Shrestha, L., and Jagannath, A. 2020. Correlating the plant height of wheat with above-ground biomass and crop yield using drone imagery and crop surface model: A case study from Nepal. Drones. 28(4): 1-15.

Punyatuy, S., Boonmee, N., Inplub, P., Chaiwongsar, S., Sritanda, N. and Insalud, N, 2021. Effects of planting dates on growth, yield components and yield of bread wheat promising lines. J. Sci. Tech. 10(2): 1-8. (in Thai)

Rachana, P., Binju, M., Suprava, A., Bigyan, K. C., Rishav, P., Rashmi, R., Bishnu, B., Pritika, N. and Kushal, B. 2021. Correlation and path coefficient analysis of yield in wheat: A review. RJOAS. 5(113): 121-127.

Rice Department. 2019. Demand of temperate cereal in Thailand. In: Report of the 35th Conference on Utilization of Temperate Cereal, Bangkok. p. 1-8. (in Thai)

Rice Department. 2021. Utilization of temperate cereal. In: Report of the 37th Conference on Rice and Cereals Production, Bangkok. p. 5055. (in Thai)

Saini, L. and Tiwana, U. S. 2023. Effect of seed Rates and row spacing on the growth, yield at tributes and grain yield of wheat (Triticum aestivum L.). Front. Crop Improvement. 11(3): 1516-1519.

Samani, M.R.K, Khajehpour, M.R. and Ghavaland, A. 1999. Effects of row spacing and plant density on growth and dry matter accumulation in cotton on Isfahan. Iran J. Agri. Sci. 29(4): 667-679.

Sharma, R. K., Chhokar, R. S., Jat, M. L. and Joshi, A. K. 2019. Dual-purpose wheat: Nutritious fodder for livestock, grain for humans and additional income for farmers. Technical Manual. ICAR-IIWBR and CIMMYT.

Shaw, M. D. and Tabil, L. G. 2005. Compression studies of peat moss, wheat straw, oat Hulls and Flax Shives. CIGRJ. 17(6): 344-350.

Tarani, E. and Chrissafs, K. 2024. A comparative study of drinking straws made from natural resources: structural and morphological characterization. Int. J. Environ. Sci. Technol. 21(5): 3943–3956.

Woldekiros, B. 2020. Effects of row spacing and seed rate on yield and yield components of bread wheat (Triticum Aestivum L.) in Mid Altitude of Sankura District, South Ethiopia. IJRAF. 7(1): 10-13.

Xue, J., Qi, B.Q., Ma, B.Y., Li, B.X. and Gou, L. 2021. Effect of altered leaf angle on maize stalk lodging resistance. Crop Sci. 61(1): 689–703.

Yang, Z., Zheng, J., Liu, C., Wang, Y., Gerard, A., Chen, C.Y. and Hu, Y.-G. 2015. Effects of the GA-responsive dwarfing gene Rht18 from tetraploid wheat on agronomic traits of common wheat. Field Crops Res. 183(1): 92-101.

Zhang, L., Larsson, A., Moldin, A. and Edlund, U. 2022. Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Ind. Crops Prod. 187(3): 1-14.

Zheng, M.J., Chen, J., Shi, Y.H., Li, Y.X., Yin, Y.P., Yang, D.Q., Luo, Y.L., Pang, D.W., Xu, X. and Li, W.Q. 2017. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Sci. Rep. 7(1): 1-12.