Accumulation of microplastics in zooplankton from Chonburi Province, the Upper Gulf of Thailand

Authors

  • Charernmee Chamchoy Marine Biodiversity Research Group Department of Biology, Faculty of Science Ramkhamhaeng University , Huamark, Bangkok 10240, THAILAND
  • Darika Buathong Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University
  • Pronsiri Sriwisait Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University
  • Orathep Muresare Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University
  • Makamas Sutthacheep Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University
  • Thamasak Yeemin Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University

Keywords:

Accumulation, Microplastics, Upper Gulf of Thailand, Zooplankton

Abstract

Plastic particles are considered to be microplastics when below 5 mm in length, being fibrous, fragments, pellets or beads. Those particles cannot be digested by marine organisms, causing physiological problems to different animals worldwide. Zooplankton can ingest microplastic, and thus introduce it into the food web, causing bioaccumulation from basic to top levels, which can later reach humans consumers. We investigated the characteristics and abundance of microplastics ingested by different groups of zooplankton. The samples were collected at Ao Bang Lamung beach, Chonburi Province, the Upper Gulf of Thailand by using a standard 120 μm mesh plankton net with mouth diameter of 30 cm, by horizontal hauls. Later analyzed under a stereomicroscope and identified by using Fourier transform infrared spectroscopy (FTIR). Microplastics were detected at all dominant zooplankton groups here: Chaetognaths, Shrimp larvae, Cyclopoid copepods, Calanoid copepods, and Cirripedia nauplius, except for Harpacticoid copepods. The highest abundance of microplastics was found in Cirripedia nauplius with 1.15 particles per individual, followed by Cyclopoid copepods with 0.5 particles per individual. All microplastics found were fibrous, ranging from 0.1 to 0.5 mm in length. The majority (87.7%) were blue, followed by red (8.7%), while brown and black were less common (1.8%). A total of 63.9% of the microplastics come from polyethylene terephthalate, while 27.9% come from polyurethane, and only 8.2% are rayon. We found evidence that zooplankton ingest microplastic in the Upper Gulf of Thailand, potentially introducing it into the local food web. A higher abundance of particles from PET origin evidence a high level of domestic trash and land bourne microplastics, possibly carried by the rivers to ocean waters. Microplastics are one of the main environmental challenges nowadays, worldwide, this study indicates its presence in zooplankton of the Upper Gulf of Thailand, and urgent measures are needed to prevent human consumption and related health problems.

References

Amin, R. M., Sohaimi, E. S., Anuar, S. T., & Bachok, Z. (2020). Microplastic ingestion by zooplankton in Terengganu coastal waters, southern South China Sea. Marine pollution bulletin, 150, 110616.

Baier, C.T., Purcell, J.E., 1997. Trophic interactions of chaetognaths, larval fish, and zooplankton in the South Atlantic Bight. Mar. Ecol. Prog. Ser. 146, 45–53. https:// doi.org/10.3354/meps146043.

Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205.

Boerger, C.M., Lattin, G.L., Moore, S.L., Moore, C.J., 2010. Plastic ingestion by planktivorous fishes in the North Pacific central gyre. Mar. Pollut. Bull. 60, 2275–2278. https://doi.org/10.1016/j.marpolbul.2010.08.007

Botterell, Z.L.R., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R.C., Lindeque, P.K., 2019. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut. 245, 98-110. https://doi.org/10.1016/j.envpol.2018.10.065

Botterell, Z.L.R., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R.C., Lindeque, P.K., 2019. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut. 245, 98-110. https://doi.org/10.1016/j.envpol.2018.10.065

Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R., 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ. Sci. Technol. 45 (21), 9175–9179. https://doi.org/10.1021/es201811s.

Burton, J.G., 2017. Stressor exposures determine risk: so, why do fellow scientists continue to focus on superficial microplastics risk? Environ. Sci. Technol. 51, 13515–13516. https://doi.org/10.1021/acs.est.7b05463.

Christaki, U., Dolan, J.R., Pelegri, S., Rassoulzadegan, F., 1998. Consumption of picoplankton- size particles by marine ciliates: effects of physiological state of the ciliate and particle quality. Limnol. Oceanogr. 43 (3), 458–464. https://doi.org/10.4319/lo. 1998.43.3.0458.

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S., 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47 (12), 6646–6655. https://doi.org/10.1021/es400663f.

Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

Collignon, A., Hecq, J.H., Glagani, F., Voisin, P., Collard, F., Goffart, A., 2012. Neustonic microplastic and zooplankton in the north western Mediterranean sea. Mar. Pollut. Bull. 64 (4), 861–864. https://doi.org/10.1016/j.marpolbul.2012.01.011.

Cozar, A., Echevarria, F., Gonzalez-Gordillo, J.I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A.T., Navarro, S., Garcia-de-Lomas, J., Ruiz, A., Fernandez-de-Puelles, M.L., Duarte, C.M., 2014. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. U. S. A. 111, 10239–10244. https://doi.org/10.1073/pnas.1314705111

Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 69 (3), 320–330. https://doi.org/10.1007/s00244-015-0172-5.

Farrell, P., Nelson, K., 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 177, 1–3. https://doi.org/10.1016/j.envpol. 2013.01.046.

Gago, J., Carretero, O., Filgueiras, A.V., Vinas, L., 2018. Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments. Mar. Pollut. Bull. 127, 365–376. https://doi.org/10.1016/j.marpolbul.2017.11.070

Gall, S.C., Thompson, R.C., 2015. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041

GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2015. Sources, fate and effects of microplastics in the marine environment: a global assessment”. Rep. Stud. GESAMP 90, 96. https://doi.org/10.13140/ RG.2.1.3803.7925.

Graham, E.R., Thompson, J.T., 2009. Deposit and suspension feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Ecol. 368, 22–29.

Kosore, C., Ojwang, L., Maghanga, J., Kamau, J., Kimeli, A., Omukoto, J., Ndirui, E., 2018. Occurrence and ingestion of microplastics by zooplankton in Kenya's marine environment: first documented evidence. Afr. J. Mar. Sci. 40 (3), 225–234. https:// doi.org/10.2989/1814232X.2018.1492969.

Lebreton, L.C.M., Van Der Zwet, J., Damsteeg, J.W., Slat, B., Andrady, A., Reisser, J., 2017. River plastic emissions to the world's oceans. Nat. Commun. 8, 15611.

Lusher, A.L., McHugh, M., Thompson, R.C., 2013. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 67, 94–99.

Lusher, A.L., McHugh, M., Thompson, R.C., 2013. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 67, 94–99.

Lusher, A.L., Tirelli, V., O’Connor, I., Officer, R., 2015. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947

Moore, C.J., 2008. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research. 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025

Murray, F., Cowie, P.R., 2011. Plastic contamination in the decapod crustacean nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 62(6), 1207–1217. https://doi.org/10.1016/j.marpolbul.2011.03.032

Nel, H.A., Froneman, P.W., 2015. A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa. Mar. Pollut. Bull. 101, 274–279. https://doi.org/10.1016/j.marpolbul.2015.09.043.

Norén, F., 2007. Small plastic particles in coastal Swedish waters. KIMO Sweden Rep. 1–11.

Patterson, J., Jeyasanta, K.I., Sathish, N., Booth, A.M., Edward, J.K.P., 2019. Profiling microplastics in the Indian edible oyster, Magallana bilineata collected from the Tuticorin coast, Gulf of Mannar, southeastern India. Sci. Total Environ. 691, 727–735. https://doi.org/10.1016/j.scitotenv.2019.07.063.

PlasticsEurope, 2018. Plastics – The Facts 2017, an Analysis of European Plastics Production, Demand and Waste Data. pp. 16 (Brussels – Belgium).

Rochman C. M., 2018. Microplastics research—from sink to source. Science. 360 (6384): 28-29.

Rochman, C.M., Hoh, E., Kurobe, T., Teh, S.J., 2013. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 3, 3263. https://doi.org/10. 1038/srep03263.

Rodríguez-Seijo, A., Pereira, R., 2017. Morphological and physical characterization of microplastics. In: Rocha-Santos, T.A.P., Duarte, A.C. (Eds.), Comprehensive Analytical Chemistry Series. Elsevier B.V, pp. 49–66. https://doi.org/10.1016/bs. coac.2016.10.007.

Setälä, O., Fleming-Lehtinen, V., Lehtiniemi, M., 2014. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185, 77–83. https://doi.org/10. 1016/j.envpol.2013.10.013.

Sun, X., Li, Q., Zhu, M., Liang, J., Zheng, S., Zhao, Y., 2017. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Mar. Pollut. Bull. 115 (1–2), 217–224. https://doi.org/10.1016/j.marpolbul.2016.12.004.

Sun, X., Liang, J., Zhu, M., Zhao, Y., Zhang, B., 2018. Microplastics in seawater and zooplankton from the Yellow Sea. Environ. Pollut. 242 (Part A), 585–595. https:// doi.org/10.1016/j.envpol.2018.07.014.

Sun, X.X., Liang, J.H., Zhu, M.L., Zhao, Y.F., Zhang, B., 2018a. Microplastics in seawater and zooplankton from the Yellow Sea. Environ. Pollut. 242, 585−595. https://doi.org/10.1016/j.envpol.2018.07.014

Sun, X.X., Liu, T., Zhu, M.L., Liang, J.H., Zhao, Y.F., Zhang, B., 2018b. Retention and characteristics of microplastics in natural zooplankton taxa from the East China Sea. Sci. Total. Environ. 640, 232–242. https://doi.org/10.1016/j.scitotenv.2018.05.308

Tang, G.W., Liu, M.Y., Zhou, Q., He, H.X., Chen, K., Zhang, H.B., Hu, J.H. Huang, Q.H., Luo, Y.M., Ke, H.W., 2018. Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts. Sci. Total. Environ. 634, 811–820. https://doi.org/10.1016/j.scitotenv.2018.03.336

Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., Russell, A.E., 2004. Lost at sea: where is all the plastic? Science. 304, 838-838. https://doi.org/10.1126/science.1094559

Turra, A., Manzano, A.B., Dias, R.J.S., Mahiques, M.M., Barbosa, L., Balthazar-Silva, D., Moreira, F.T., 2014. Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms. Sci. Rep-UK. 4, 4435. https://doi.org/10.1038/srep04435

UNEP, 2016. Marine Plastic Debris and Microplastic Technical Report. United Nations Environmental Programme, Nairobi.

Van Cauwenberghe, L., Vanreusel, A., Mees, J., Janssen, C.R., 2013.Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013

van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B.D., van Franeker, J.A., Law, K.L., 2015. A global inventory of small floating plastic debris. Environ. Res. Lett. 10 (12), 124006. https://doi.org/10.1088/1748-9326/10/12/124006.

Villarrubia-Gomez, P., Cornell, S.E., Fabres, J., 2017. Marine plastic pollution as a planetary boundary threat–the drifting piece in the sustainability puzzle. Mar. Policy. https://doi.org/10.1016/j.marpol.2017.11.035.

Wright, S.L., Thompson, R.C., Galloway, T.S., 2013. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483−492. https://doi.org/10.1016/j.envpol.2013.02.031

Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C. and Luo, Y., 2018. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma. 322, 201-208.

Downloads

Published

2021-04-30

Issue

Section

Original Articles