An 1H-NMR-based Metabolomics approach for understanding the influence of geographical origin differentiation on the major diarylheptanoid phytoestrogens in Curcuma comosa rhizome


  • Worawut Chaiyasaeng Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, Thailand, 10240
  • Jamrearn Buaruang Division of Environmental Science, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, Thailand, 10240
  • Apichart Suksamrarn Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, Thailand, 10240
  • Waraluck Chaichompoo Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand, 10330 and Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand, 10330
  • Wachirachai Pabuprapap Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, Thailand, 10240
  • Wang Nguitragool Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 10400
  • Boon-ek Yingyongnarongkul Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, Thailand, 10240


Chemometrics, Fingerprinting, Food authentication, Wan Chak Motluk, OPLS-DA, PCA


Curcuma comosa has been widely used for gynecological herbal or traditional medicinal purposes. It has been reported that this turmeric plant offers several biological activities, such as anti-inflammatory, anti-lipidemic, and estrogen-like effects. Authentication of C. comosa is crucial to ensure its authenticity and prevent adulteration. Plants from different origins will have distinct metabolite compositions due to the influence of soil nutrition, climate, temperature, and humidity. We used 1H-NMR spectroscopy in combination with chemometrics (Principal Component Analysis (PCA) and Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA)) analysis to unveil metabolic differences among C. comosa samples from six different provinces of Thailand (Kalasin, Nakhon Phanom, Samut Sakhon, Nakhon Pathom, Phetchabun, and Chiang Mai). The 1H-NMR analysis revealed the presence of twelve metabolites, including DA1-DA5, sucrose, α-glucose, β-glucose, formate, fatty acids, and two DA-OAc, which were identified as potential metabolites for differentiating geographical origins. Additionally, a higher normalized abundance of DA1-DA5 was observed in  C. comosa from Nakhon Pathom, Phetchabun, Samut Sakhon, and Nakhon Phanom compared to Chiang Mai and Kalasin. Both the optimal PCA and OPLS-DA models demonstrated a good fit (R2 > 0.8) and strong predictivity (Q2 > 0.5). The optimal OPLS-DA model was validated through permutation tests, yielding high values for the original R2 and Q2. In conclusion, metabolite fingerprinting using 1H-NMR spectroscopy and chemometrics provides a powerful tool for authenticating C. comosa rhizomes.



A. C. Abreu, S. Mora, A. I. Tristán, E. Martín-González, A. Prados-Pardo, M. Moreno, and I. Fernández (2022) NMR-based Metabolomics and Fatty Acid Profiles to Unravel Biomarkers in Preclinical Animal Models of Compulsive Behavior. J. Proteome Res. 21(3), 612-622

J. Chao, Y. Dai, H. Y. Cheng, W. Lam, Y. C. Cheng, K. Li, W. H. Peng, L. H. Pao, M. T. Hsieh, X. M. Qin, and M. S. Lee (2017) Improving the concentrations of the active components in the herbal tea ingredient, Uraria crinita: The effect of post-harvest oven-drying processing. Scientific reports, 7(1), 38763

G. P. Danezis, A. S. Tsagkaris, V. Brusic, and C. A. Georgiou (2016) Food authentication: state of the artprospects.” Curr. Opin. Food Sci., 10, 22-31

A. C. Dona, M. Kyriakides, F. Scott, E. A. Shephard, D. Varshavi, K. Veselkov, and J. R. Everett (2016) A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput. Struct. Biotechnol. J, 14, 135-153

R. A. DeFilipps, and G. A Krupnick (2018) The medicinal plants of Myanmar. PhytoKeys, 102, 1-341

C. J. Hernández-Guerrero, N. Villa-Ruano, L. G. Zepeda-Vallejo, A. D. Hernández-Fuentes, K. Ramirez-Estrada, S. Zamudio-Lucero, D. Hidalgo-Martínez, and E. Becerra-Martínez (2021) Bean cultivars (Phaseolus vulgaris L.) under the spotlight of NMR metabolomics. Int. Food Res., 150, 110805

V. Keeratinijakal, M. Kladmook, and K. Laosatit (2010) Identification and characterization of Curcuma comosa Roxb., phytoestrogens-producing plant, using AFLP markers and morphological characteristics. J. Med. Plant Res., 4(24), 2651-2657

T. J. Kim, J. G. Park, H. Y. Kim, S. H. Ha, B. Lee, S. U. Park, W. D. Seo, and J. K. Kim (2020) Metabolite profiling and chemometric study for the discrimination analyses of geographic origin of perilla (Perilla frutescens) and sesame (Sesamum indicum) seeds. Foods, 9(8), 989

G. Knothe, and J. A. Kenar (2004) Determination of the fatty acid profile by 1H‐NMR spectroscopy. Eur. J. Lipid Sci. Technol., 106(2), 88-96

S. Lodge, P. Nitschke, T. Kimhofer, J. Wist, S. H. Bong, R. L. Loo, R. Masuda, S. Begum, T. Richards, J. C. Lindon, and W. Bermel (2021) Diffusion and relaxation edited proton NMR spectroscopy of plasma reveals a high-fidelity supramolecular biomarker signature of SARS-CoV-2 infection. Anal. Chem., 93(8), 3976-3986

A. L. Macready, S. Hieke, M. Klimczuk-Kochańska, S. Szumiał, L. Vranken, and K. G. Grunert (2020) Consumer trust in the food value chain and its impact on consumer confidence: A model for assessing consumer trust and evidence from a 5-country study in Europe. Food Policy, 92, 101880

C. O. Montoya-García, R. García-Mateos, J. J. Magdaleno-Villar, V. H. Volke-Haller, N. Villa-Ruano, L. G. Zepeda-Vallejo, and E. Becerra-Martínez (2023) NMR-based metabolomics to determine the fluctuation of metabolites in hydroponic purslane crops at different harvesting times. Int. Food Res., 166, 112489

Y. Navarro, R. Soengas, M. J. Iglesias, and F. L. Ortiz (2020) Use of NMR for the analysis and quantification of the sugar composition in fresh and store-bought fruit juices. J. Chem. Educ., 97(3), 831-837

C. Petchprayoon, K. Charupant, S. Krabesri, T. Kitisripanya, C. Aneklaphakij, S. Bunsupa, N. Anantachoke, V. Satitpatipan, N. Chatsumpun, and P. Sithisarn (2022) Pharmacognostic characteristics, physical properties and chromatographic fingerprints of Curcuma comosa Roxb. rhizome samples collected in Thailand. Agr. Nat. Resour., 56(4), 781-790

P. Piyachaturawat, S. Ercharuporn, and A. Suksamrarn (1995) Uterotrophic effect of Curcuma comosa in rats. Int. J. Pharmacogn., 33(4), 334-338

P. Piyachaturawat, J. Charoenpiboonsin, C. Toskulkao, and A. Suksamrarn (1999) Reduction of plasma cholesterol by Curcuma comosa extract in hypercholesterolaemic hamsters. J. Ethnopharmacol. 66(2), 199–204

J. G. M. Pontes, A. J. M. Brasil, G. C. Cruz, R. N. de Souza, and L. Tasic (2017) NMR-based metabolomics strategies: plants, animals and humans. Anal. Methods, 9(7), 1078-1096

J. R. Gauthier, D. Burns, J. Sheng, and J. C. D’eon (2022) Exploring the composition and authenticity of honey and syrup samples using quantitative NMR spectroscopy and principal component analysis in an upper-year undergraduate analytical environmental course. J. Chem. Educ., 100(1), 161-169

A. Rivera-Pérez, R. Romero-González, and A. G. Frenich, (2021) Application of an innovative metabolomics approach to discriminate geographical origin and processing of black pepper by untargeted UHPLC-Q-Orbitrap-HRMS analysis and mid-level data fusion. Int. Food Res. 150, 110722

G. Rocchetti, S. Michelini, V. Pizzamiglio, F. Masoero, and L. Lucini (2021) A combined metabolomics and peptidomics approach to discriminate anomalous rind inclusion levels in Parmigiano Reggiano PDO grated hard cheese from different ripening stages. Int. Food Res.149, 110654

P. Singh, P. Kumar, V. Pande, V. Kumar, and R. C. Dhiman (2022) Untargeted metabolomics-based response analysis of temperature and insecticide exposure in Aedes aegypti. Scientific Reports, 12(1), 2066

A. P. Sobolev, F. Thomas, J. Donarski, C. Ingallina, S. Circi, F. C. Marincola, D. Capitani, and L. Mannina (2019) Use of NMR applications to tackle future food fraud issues. Trends Food Sci. Technol., 91, 347-353

A. Sodsai, P. Piyachaturawat, S. Sophasan, A. Suksamrarn, and M. Vongsakul (2007) Suppression by Curcuma comosa Roxb. of pro-inflammatory cytokine secretion in phorbol-12-myristate-13-acetate stimulated human mononuclear cells. Int. Immunopharmacol., 7(4), 524-531

A. Suksamrarn, M. Ponglikitmongkol, K. Wongkrajang, A. Chindaduang, S. Kittidanairak, A. Jankam, B. E. Yingyongnarongkul, N. Kittipanumat, R. Chokchaisiri, P. Khetkam, and P. Piyachaturawat (2008) Diarylheptanoids, new phytoestrogens from the rhizomes of Curcuma comosa: Isolation, chemical modification and estrogenic activity evaluation. Bioorg. Med. Chem., 16(14), 6891-6902

K. Suksen, T. Charaslertrangsi, C. Noonin, S. Jariyawat, W. Devakul Na Ayutthaya, A. Suksamrarn, P. Tuchinda, and P. Piyachaturawat (2016) Protective effect of diarylheptanoids from Curcuma comosa on primary rat hepatocytes against t-butyl hydro- peroxide-induced toxicity. Pharm. Biol., 54(5), 853-862

P. Tabboon, S. Tuntiyasawasdikul, and B. Sripanidkulchai (2019) Quality and stability assessment of commercial products containing phytoestrogen diaryheptanoids from Curcuma comosa. Ind. Crops Prod., 134, 216-224

D. Tantikanlayaporn, L. J. Robinson, A. Suksamrarn, P. Piyachaturawat, and H. C. Blair (2013a) A diarylheptanoid phytoestrogen from Curcuma comosa, 1,7- diphenyl-4,6-heptadien-3-ol, accelerates human osteoblast proliferation and differentiation. Phytomedicine, 20(8-9), 676-82

D. Tantikanlayaporn, P. Wichit, J. Weerachayaphorn, A. Chairoungdua, A. Chuncharunee, A. Suksamrarn, and P. Piyachaturawat (2013b). Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. in ovariectomized rats. PloS one, 8(11), 78739

Z. Wang, X. Chen, Q. Liu, L. Zhang, S. Liu, Y. Su, Y. Ren, and C. Yuan (2023) Untargeted metabolomics analysis based on LC-IM-QTOF-MS for discriminating geographical origin and vintage of Chinese red wine. Int. Food Res., 165, 112547

W. Winuthayanon, K. Suksen, C. Boonchird, A. Chuncharunee, M. Ponglikitmongkol, A. Suksamrarn, and P. Piyachaturawat (2009) Estrogenic activity of diarylheptanoids from Curcuma comosa Roxb. requires metabolic activation. J. Agric. Food Chem., 57(3), 840-845

B. Yingngam, A. Brantner, D. Jinarat, R. Kaewamatawong, W. Rungseevijitprapa, A. Suksamrarn, P. Piyachaturawat, and R. Chokchaisiri, (2018) Determination of the marker diarylheptanoid phytoestrogens in Curcuma comosa rhizomes and selected herbal medicinal products by HPLC-DAD. Chem. Pharm. Bull., 66(1), 65-70

S. Yousf, D. M. Sardesai, A. B. Mathew, R. Khandelwal, J. D. Acharya, S. Sharma, and J. Chugh (2019) Metabolic signatures suggest o-phosphocholine to UDP-N-acetylglucosamine ratio as a potential biomarker for high-glucose and/or palmitate exposure in pancreatic β-cells. Metabolomics, 15, 1-16

Y. Zhou, S. Y. Kim, and J. S. Lee (2021) Discrimination of the geographical origin of soybeans using NMR-based metabolomics. Foods, 10, 1-16






Original Articles