Influence of High Volume Bottom Ash as a Pozzolan on Compressive Strength, Water Absorption, and MgSO4 Resistance of Concrete
Main Article Content
Abstract
This article presents the effect of high-volume bottom ash to be used as Pozzolan on compressive strength, percentage compressive strength loss due to immersion in magnesium sulfate (MgSO4) solution, and water absorption of concrete. The bottom ash used in this research was ground until the particles were retained on a No.325 sieve less than 5% by weight. After that, the bottom ash was used to replace Portland cement at the rates of 10, 20, 30, 50, and 70% by weight of the binder. The water to binder ratio was constant at 0.45. Compressive strength, the percentage loss of compressive strength due to immersion in 5% MgSO4 solution, and water absorption of concrete were investigated. The results found that concrete containing bottom ash in the mixture as 10% by weight gave higher compressive strength than control concrete and the others bottom ash concrete mixture. The loss of compressive strength due to immersion in MgSO4 solution was increased when the age of concrete increased. The losses of compressive strength due to immersion in MgSO4 solution in the percentage of concrete containing bottom ash at the rates of 50 and 70% by weight of binder were higher than the others bottom ash concrete. For another result, the water absorption of concrete was increased by enhancing the bottom ash level in the concrete mixture. Additionally, the result also found that the percentage loss of compressive strength due to immersion in MgSO4 solution rapidly raised when the concrete had water absorption higher than 3.10%. This research indicated that, although the use of high-volume bottom ash in the concrete mixture affected the decreasing of compressive strength, their compressive strength could meet the requirement of concrete exposed in a sulfate environment in accordance with ACI 318-14.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The content within the published articles, including images and tables, is copyrighted by Rajamangala University of Technology Rattanakosin. Any use of the article's content, text, ideas, images, or tables for commercial purposes in various formats requires permission from the journal's editorial board.
Rajamangala University of Technology Rattanakosin permits the use and dissemination of article files under the condition that proper attribution to the journal is provided and the content is not used for commercial purposes.
The opinions and views expressed in the articles are solely those of the respective authors and are not associated with Rajamangala University of Technology Rattanakosin or other faculty members in the university. The authors bear full responsibility for the content of their articles, including any errors, and are responsible for the content and editorial review. The editorial board is not responsible for the content or views expressed in the articles.
References
สำนักงานเศรษฐกิจอุตสาหกรรม, 2563, รายงานภาพรวมเศรษฐกิจและอุตสาหกรรมไทย ปี 2563 และแนวโน้ม ปี 2564, หน้า 26.
P. Chindaprasirt, C. Jaturapitakkul, W. Chalee and U. Rattanasak, “Comparative study on the characteristics of fly ash and bottom ash geopolymers,” Waste Manage., vol. 29, no. 2, pp. 539–543, 2009.
P. Krammart and S. Tangtermsirikul, “Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste”, Constr. Build. Mat., vol. 18, no. 8, pp. 579-583, 2004.
H. Kurama and M. Kaya, “Usage of coal combustion bottom ash in concrete mix-ture,” Constr. Build. Mat., vol. 22, no. 9, pp. 1922–1928, 2008.
W. Wongkeo, P. Thongsanitgarn, K. Pimraksa and A. Chaipanich, “Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials,” Mat. Des., vol. 35, pp. 434–439, 2012.
P. Khongpermgoson, A. Abdulmatin, W. Tangchirapat and C. Jaturapitakkul, “Evaluation of compressive strength and resistance of chloride ingress of concrete using a novel binder from ground coal bottom ash and ground calcium carbide residue,” Constr. Build. Mat., vol. 214, pp. 631–640, 2019.
กมล ตรีผอง, วีรพันธุ์ เจียมมีปรีชา และ อรรคเดช อับดุลมาติน. “การใช้ประโยชน์จากกากแคลเซียมคาร์ไบด์และเถ้าก้นเตาเป็นวัสดุประสานสำหรับคอนกรีตบล็อก,” วารสารวิศวกรรมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ, ปีที่ 15 (ฉบับที่ 2), หน้าที่ 1–11, 2563.
C. Jaturapitakkul and R. Cheererot, “Deve-lopment of bottom ash as pozzolanic mat-erial,” J. Mat. Civ. Eng, ASCE, vol. 15, no. 1, pp. 48–53, 2003.
R. Siddique, “Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of self-compacting concrete containing coal bottom ash”, Constr. Build. Mat., vol. 47, pp. 1444-1450, 2013.
A. Abdulmatin, W. Tangchirapat and C. Jaturapitakkulya, “An investigation of bot-tom ash as a pozzolanic material,” Constr. Build. Mat., vol. 186, pp. 155–162, 2018.
อรรคเดช อับดุลมาติน, วีรชาติ ตั้งจิรภัทร และ ชัย จาตุรพิทักษ์กุล. “ผลกระทบของชนิดของสารลดน้ำพิเศษต่อสมบัติของเพสต์และมอร์ตาร์ที่ใช้เถ้าก้นเตาร่วมกับกากแคลเซียมคาร์ไบด์เป็นวัสดุประสาน,”วารสารวิชาการสมาคมคอนกรีตแห่งประเทศไทย, ปีที่ 3 (ฉบับที่ 1), หน้าที่ 31–41, 2558.
ASTM C618, “Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete,” ASTM International, West Conshohocken, PA, 2019.
ASTM C188-15, “Standard test method for density of hydraulic cement,” ASTM International, West Conshohocken, PA, 2015.
ASTM C39 / C39M-16, “Standard test method for compressive strength of cylindrical concrete specimens,” ASTM International, West Conshohocken, PA, 2016.
Kurama, H. and Kaya, M., 2008, "Usage of Coal Combustion Bottom Ash in Concrete Mixture," Construction and Building Materials, 22 (9) pp. 1922- 1928.
อรรคเดช อับดุลมาติน, ปกป้อง รัตนชู, เพ็ญพิชชา คงเพิ่มโกศล, วีรชาติ ตั้งจิรภัทร และ ชัย จาตุรพิทักษ์กุล. “การศึกษาปฏิกิริยาปอซโซลานของเถ้าก้นเตาที่ได้จากการเผาถ่านหินลิกไนต์และถ่านหินบิทูมินัส” วารสารวิจัยและพัฒนา มจธ., ปีที่ 43 (ฉบับที่ 1) หน้าที่ 49-65, 2563.
Bouzoubaa, N., Min-Hong Zhang, and V. M. Malhotra. "Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash." Cement and Concrete Research Vol 31, no. 10 : 1393-1402., 2001.
ACI Committee 318. “Building code requirements for structural concrete (ACI 318-11) and commentary. American Concrete Institute, Michigan. 519p (2015).
Baghabra Al-Amoudi, O.S., "Attack on Plain and Blended Cements Exposed to Aggressive Sulfate Environments", Cement and Concrete Composites, Vol. 24, No. 3–4, pp. 305-316. 2002.
Rasheeduzzafar, Al-Amoudi, O.S.B., Abduljauwad, S.N. and Maslehuddin, M., "Magnesium-Sodium Sulfate Attack in Plain and Blended Cements", Journal of Materials in Civil Engineering, Vol. 6, No. 2, pp. 201-222, 1994.
Jaturapitakkul, C., Kiattikomol, K., Tangchirapat, W. and Saeting, T., "Evaluation of the Sulfate Resistance of Concrete Containing Palm Oil Fuel Ash", Construction and Building Materials, Vol. 21, No. 7, pp. 1399-1405, 2007.