# On two Diophantine equations 16^x+qp^y=z^4 and 16^x-qp^y=z^4

## Abstract

In this paper, we show that two Diophantine equations $16^{x}+qp^{y}=z^{4}$ and $16^{x}-qp^{y}=z^{4}$, where $p$ are $q$ prime numbers,$p\equiv&space;3\left&space;(mod&space;4&space;\right&space;)$ and $q\equiv&space;3\left&space;(mod&space;4&space;\right&space;)$ , have no positive integer solution.

## Article Details

How to Cite
Siraworakun, A., & Tadee, S. (2022). On two Diophantine equations 16^x+qp^y=z^4 and 16^x-qp^y=z^4. Rattanakosin Journal of Science and Technology, 4(3), 40–45. Retrieved from https://ph02.tci-thaijo.org/index.php/RJST/article/view/246848
Section
Research Articles

## References

Klaška, J. (2017). Real-world applications of number theory. South Bohemia Mathematical Letters, 25(1), 39-47.

Kaur, D. & Sambhor, M. (2017). Diophantine equations and its applications in real life. International Journal of Mathematics and its Applications, 5(2B), 217-222.

Anbuselvi, R. & Sivasankari, J. (2019). Applications of Diophantine equations in chemical equations. Journal of Emerging Technologies and Innovative Research, 6(6), 371-373.

Dhurga, C.K. (2021). A linear Diophantine equation and its real life applications. Advances and Applications in Mathematical Sciences, 20(8), 1389-1394.

Chotchaisthit, S. (2012). On the Diophantine equation 4^x+p^y=z^2 where p is a prime number. American Journal of Mathematics and Sciences, 1(1), 191-193.

Chotchaisthit, S. & Worawiset, S. (2015). On the Diophantine equation 323^x+323^2s n^y =z^2t where s,t,n are non-negative integers and n≡5(mod 20). International Journal of Pure and Applied Mathematics, 100(3), 435-442. http://dx.doi.org/10.12732/

ijpam.v100i3.11

Chotchaisthit, S. & Worawiset, S. (2015). On the Diophantine equation 143^x+143^2s n^y =z^2t where s,t,n are non-negative integers and n≡5(mod 20). International Journal of Pure and Applied Mathematics, 100(3), 405-412. http://dx.doi.org/10.12732/

ijpam.v100i3.7

Chotchaisthit, S. & Worawiset, S. (2015). On the Diophantine equation 483^x+483^2s n^y =z^2t where s,t,n are non-negative integers and n≡5(mod 20). International Journal of Pure and Applied Mathematics, 100(4), 461-468. http://dx.doi.org/10.12732/

ijpam.v100i4.4

Rabago, J.F.T. (2018). On the Diophantine equation 4^x-p^y=3z^2 where p is a prime. hai Journal of Mathematics, 16(3), 643-650.

Laipaporn, K., Wananiyakul, S. & Khachorncharoenkul, P. (2019). On the Diophantine equation〖 3〗^x+p5^y=z^2. Walailak Journal of Science and Technology, 16(9), 647-653.

Elshahed, A. & Kamarulhaili, H. (2020). On the Diophantine equation〖 (4^n )〗^x-p^y=z^2. WSEAS Transactions on Mathematics, 19, 349-352.

Mihailescu, P. (2004). Primary cyclotomic units and a proof of Catalan’s conjecture. Journal für die Reine und Angewante Mathematik, 572, 167-195.