Using Grey Systems Theory to forecast Thailand cumulative hot spots
Main Article Content
Abstract
This research aimed to forecast the cumulative hot spots of Thailand in 2023 using Grey Systems Theory and nationwide cumulative hot spots data from the Geo-Informatics and Space Technology Development Agency (a public organization) for the past 5 years, from 2017 to 2022. The hot spots were collected during the period of January to May, which is the last month of summer. Because the cumulative hot spot time series data decreased in 2018, it continued to increase in 2019 and 2020, then decreased in 2021 and 2022. The GM (1,1) with error periodic correction (EPC) model had a mean absolute percentage error of 10.54, which was less than the GM (1,1) model. Estimating the cumulative hot spots of Thailand in 2023 using the GM (1,1) EPC model, there will be 59,22 hot spots, a decrease of 4,202 hot spots from estimated 2022 or a decrease of 6.62 percent according to the continuously decreasing trend.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The content within the published articles, including images and tables, is copyrighted by Rajamangala University of Technology Rattanakosin. Any use of the article's content, text, ideas, images, or tables for commercial purposes in various formats requires permission from the journal's editorial board.
Rajamangala University of Technology Rattanakosin permits the use and dissemination of article files under the condition that proper attribution to the journal is provided and the content is not used for commercial purposes.
The opinions and views expressed in the articles are solely those of the respective authors and are not associated with Rajamangala University of Technology Rattanakosin or other faculty members in the university. The authors bear full responsibility for the content of their articles, including any errors, and are responsible for the content and editorial review. The editorial board is not responsible for the content or views expressed in the articles.
References
ส่วนควบคุมไฟป่า สำนักป้องกัน ปราบปราม และควบคุมไฟป่า กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช. (2566). สรุปจำนวนจุดความร้อน VIIRS รายปี 2561-2565. ค้นเมื่อ 9 กันยายน 2566, https://portal.dnp.go.th/Content/firednp?contentId=19027
กองหอสมุดและศูนย์สารสนเทศ วิทยาศาสตร์และเทคโนโลยี กรมวิทยาศาสตร์บริการ. (2566, มีนาคม 10). "จุดความร้อน" และไฟป่าที่กำลังเพิ่มทำไทยเผชิญปัญหา PM 2.5 อีกระยะ. https://siweb.dss.go.th/index.php/th/accordion-1/6722-pm-2-11
Phapawich Mahamart. (2565, มีนาคม 3). 2566. สถิติจุดความร้อนย้อนหลัง 5 ปี. สำนักงานพัฒนาเทคโนโลยีอวกาศและภูมิสารสนเทศ. https://www.gistda.or.th/news_view.php?n_id=5688&lang=EN
Rungsiyanon, S. (2023, June 20). Thailand Open Burning Management: Agricultural Sector. Asia Clean Blue Skies Program Knowledge Sharing Event | Agricultural Waste Burning: Technologies and Incentives. Pollution Control Department [Internet]. [cited 2022Jun 16]https://events.development.asia/system/files/materials/2023/06/202306-thailand-open-burning-management-agricultural-sector.pdf
ประชาชาติธุรกิจ. (2566, สิงหาคม 14). ไทยส่งดาวเทียม THEOS-2 ขึ้นสู่อวกาศ ก.ย.นี้ https://www.prachachat.net/economy/news-1369555
Liu, S., & Lin, Y. (2010). Grey systems theory and application. Verlag: Springer.
Lv, C., Wang, J. & Zhang, F. (2020). Forest fire spread model based on the grey system theory. J Supercomput, 76, 3602–3614. https://doi.org/10.1007/s11227-018-2560-x
Guo, H., Hou, Y., Yang, B., Du, H. and Xiao, W. (2015), "Natural disaster forecast on the base of townships collaborative emergency: Take Fangshan District as an example", Grey Systems: Theory and Application, 5(3), 392-409. https://doi.org/10.1108/GS-06-2015-0031
Zeqiang, F., Qihong, S., Yunlong, C., & Erfu, D. RESEARCH ON FORECASTING MODEL OF FOREST FIRE BASED ON GREY-SYSTEM THEORY. Scientia Silvae Sinicae, 2002, 38(5): 95-100.
Lin, Y. H., Chiu, C. C., Lin, Y. J., & Lee, P. C. (2013). Rainfall prediction using innovative grey model with the dynamic index. Journal of Marine Science and Technology, 21(1), 63-75. DOI:10.6119/JMST-011-1116-1.
Zhou, W., & He, J-M. (2013). Generalized GM (1,1) model and its application in forecasting of fuel production. Applied Mathematical Modelling, 37(9), 6234-6243.
Igarashi, Y. (2014, May 24). Matrix transpose and matrix multiplication by Excel [Youtube]. https://www.youtube.com/watch?v=6UWG_L8TceU
Faiz, H. Oct 3, 2009 Matrix Multiplication and Inverse in Excel [Youtube]. https://www.youtube.com/watch?v=G8w-d9U3PJM
Andrés, D. (2023, June 22). Error Metrics for Time Series Forecasting. Machine Learning Pills. https://mlpills.dev/time-series/error-metrics-for-time-series-forecasting/
Cheng, K-S., Lien, Y-T., Wu, Y-C., Su, Y-F. (2017). On the criteria of model performance evaluation for real-time flood forecasting. Stochastic Environmental Research and Risk Assessment, 31, 1-24. DOI:10.1007/s00477-016-1322-7.
Lewis, C.D. (2023). Industrial and business forecasting methods. London: Butterworths. PennState Eberly College of Science. STAT 510 Applied Time Series Analysis. https://online.stat.psu.edu/stat510/lesson/5/5.1