A Characterization of Automorphism Group and Strong Endomorphism Monoid on Trees with Diameter less than 4

Main Article Content

Thanaphon Yaprome
Orawee Kruthoon
Nirutt Pipattanajinda

Abstract

For a graph G, automorphisms and strong endomorphisms on graph G refer to functions of vertex set on graph G with preserving strong connectivity, the property allows the set of these functions, along with the composition operation, to exhibit group and monoid, respectively. This research aims to identify the characteristics of automorphism and strong endomorphism functions on tree graphs with diameters less than 4.

Article Details

How to Cite
Yaprome, T., Kruthoon, O. ., & Pipattanajinda, N. (2025). A Characterization of Automorphism Group and Strong Endomorphism Monoid on Trees with Diameter less than 4. Rattanakosin Journal of Science and Technology, 7(2), 150–164. retrieved from https://ph02.tci-thaijo.org/index.php/RJST/article/view/253688
Section
Research Articles

References

Frucht, R. (1938). Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compos Mathematics 6. 239-250.

Frucht, R. (1949). Graphs of degree three with a given abstract group. Canadian J Mathematics. 1. 265-278.

Hedrlin, Z., & Pultr, A. (1964). Relations (graphs) with given finitely generated semigroups. Monatsh Math. 68. 213-217.

Hedrlin, Z., & Pultr, A. (1964). Relations (graphs) with given infinite semigroups. Monatsh Math. 68. 421-425.

Hedrlin, Z., & Pultr, A. (1965). Symmetric relations (undirected graphs) with given semigroups. Monatsh Math. 69. 318-322.

Culik, K. (1958). Zur theorie der graphen. Casopis Pest. Mat. 83. 133-155.

Knauer, U., & Nieporte, M. (1989). Endomorphisms of graphs I. The monoid of strong endomorphisms. Arch. Math. 52. 607-614.

Li, W. (1993). Green's relations on the strong endomorphism monoid of a graph. Semigroup Forum. 47. 209-214.

Pipattanajinda, N., Kim, Y., & Arworn, S. (2019). Naturally ordered strong endomorphisms on graphs. Graphs and Combinatorics. 35. 1619–1632.

นิตย์ รื่นรมย์. (2545). ทฤษฎีกราฟ. สำนักพิมพ์มหาวิทยาลัยรามคำแหง.

Gervacio, S. V., & Rara, H. M. (1989). Non-singular trees. Very Often Graphs, Vol. 2 (Ateneo de Manila University, March 1989).

Gervacio, S. V. (1996). Trees with diameter less than 5 and non-singular complement. Discrete Math. 151. 91–97.

Pipattanajinda, N. (2014). Graph with non-singularity. Far East J. Math. Sciences. 95. 1–17.

Pipattanajinda, N., & Kim, Y. (2015). The non-singularity of looped-trees and complement of trees with diameter 5. The Australasian J. of Combinatorics. 63. 297-313.

Pipattanajinda, N., & Kim, Y. (2015). Trees with diameter 5 and non-singular complement. Advances and Applications in Discrete Mathematics. 16. 111-124.

Knauer, U. (1990). Endomorphism types of trees. Words, Languages and Combinatorics. Kyoto, Japan. 28 – 31 Aug. 1990. 273-287.

Harary, F. (1969). Graph theory. Addison-Wesley. Reading. MA.

Li, W. (2003). Graphs with regular monoids. Discrete Math. 265. 105–118.

Pipattanajinda, N., Knauer, U., Gyurov, B., & Panma, S. (2014). The endomorphisms monoids of graphs of order n with a minimum degree n−3. Algebra Discrete Math. 18(2), 274–294.

Pipattanajinda, N., Knauer, U., Gyurov, B., & Panma, S. (2016). The endomorphism monoids of (n−3)-regular graphs of order n. Algebra Discrete Math. 22(2), 284–300.

Pipattanajinda, N. (2014). The endotype of (n−3)-regular graphs of order n. Southeast Asian Bull. Math. 38, 535–541.