Shrimp Pond Water Temperature Forecasting System using Multiple Regression: a case study of Sam Roi Yot Subdistrict, Prachuap Khiri Khan Province
Main Article Content
Abstract
Shrimp farming is an important economic industry, where water temperature control plays a crucial role in the health and growth of shrimp. This research develops a tool system for collecting shrimp pond environmental data to forecast water temperature in shrimp ponds using 7 types of sensors to collect environmental data as follows: 1. Time 2. Water temperature 3. Air temperature 4. Air relative humidity 5. Water pH 6. Light intensity 7. Wind speed 8. Wind direction. The obtained data were analyzed using multiple regression to find the relationship of various factors on the forecast of water temperature in shrimp ponds. It was found that the factors with significance at the 0.05 level were:
1. Time 2. Water temperature 3. Air temperature 4. Air relative humidity 5. Light intensity. A real-time temperature forecasting system was developed, 1 hour in advance, with an accuracy of 98.2 percent, which allows farmers to promptly prepare equipment to adjust the water temperature in the pond to reduce possible losses from changes in water temperature.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The content within the published articles, including images and tables, is copyrighted by Rajamangala University of Technology Rattanakosin. Any use of the article's content, text, ideas, images, or tables for commercial purposes in various formats requires permission from the journal's editorial board.
Rajamangala University of Technology Rattanakosin permits the use and dissemination of article files under the condition that proper attribution to the journal is provided and the content is not used for commercial purposes.
The opinions and views expressed in the articles are solely those of the respective authors and are not associated with Rajamangala University of Technology Rattanakosin or other faculty members in the university. The authors bear full responsibility for the content of their articles, including any errors, and are responsible for the content and editorial review. The editorial board is not responsible for the content or views expressed in the articles.
References
Jory, D. E. (2018). Current production, challenges and the future of shrimp farming. Global Seafood Alliance. Retrieved on October 30, 2024, searched at https://www.globalseafood.org/advocate/current-production-challenges-and-the-future-of-shrimp-farming
Jayandan, S. A., Prathibanandhi, K., Sahana, A., Agilesh, M. B., & Moorthy, D. R. (2023). Aquaculture Water Quality Monitoring System. 2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS), 1–10. https://doi.org/10.1109/ICCEBS58601.2023.10449172
Abubaker, A. M., Elfadil, M., Bashir, E. A., & Awadalla, M. O. (2021). Rainfall prediction using multiple linear regressions model. 2021 International Conference on Communication, Control, and Electronics Engineering (ICCCEE), 1–5. https://doi.org/10.1109/ICCCEE49695.2021.9429650
ศูนย์ศึกษาการพัฒนาอ่าวคุ้งกระเบน อันเนื่องมาจากพระราชดำริ. (2562). การเลี้ยงกุ้งขาว (Litopenaeus vannamei) ตามปรัชญาเศรษฐกิจพอเพียง. สืบค้นเมื่อวันที่ 30 ตุลาคม 2567, เข้าถึงได้จาก https://www4.fisheries.go.th/local/file_document/20191104142447_1_file.pdf
บุญรัตน์ ประทุมชาติ. (2559). ผลของอุณหภูมิและความหนาแน่นของการลำเลียงลูกกุ้งขาว (Litopenaeus vannamei) ลูกกุ้งกุลาดำ (Penaeus monodon) และกุ้งก้ามกราม (Macrobrachium rosenbergii) ระยะโพสลาวา ต่อการรอดตาย ความแข็งแรงและการเปลี่ยนแปลงของคุณภาพน้ำที่ใช้ลำเลียงบางประการ. มหาวิทยาลัยบูรพา
Duangwongsa, J., Ungsethaphand, T., Akaboot, P., Khamjai, S., & Unankard, S. (2021). Real-time water quality monitoring and notification system for aquaculture. Proceedings of the 6th International Conference on Digital Arts, Media and Technology (DAMT) and the 4th ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (NCON), 9–13. https://doi.org/10.1109/ECTIDAMTNCON51128.2021.9425744.
Capelo, J., Ruiz, E., Asanza, V., Toscano-Quiroga, T., Sánchez-Pozo, N. N., Lorente-Leyva, L. L., & Peluffo-Ordóñez, D. H. (2021). Raspberry Pi-based IoT for shrimp farms: Real-time remote monitoring with automated system. Proceedings of the International Conference on Applied Electronics (AE), 2021, 515-540.
Kirankumar, P., Keertana, G., Abhinash, S. U., Vijaykumar, B., & Shah, C. (2021). Smart monitoring and water quality management in aquaculture using IoT and ML. 2021 IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT), 32–36.
Krishna Reddy, D., Sai Kumar, R., Anusha, S., Bhaskar Reddy, P., & Sireesha, K. (2023). IoT based water quality monitoring for smart aquaculture. Proceedings of the International Conference on Smart Technologies and Aquaculture Systems, 18–25.
Nguyen Thai-Nghe, M., Nguyen, D. T., Pham, M. T., & Nguyen, N. H. (2020). A forecasting model for monitoring water quality in aquaculture and fisheries IoT systems. Proceedings of the International Conference on Advanced Technologies for Communications (ATC), 34–38. https://doi.org/10.1109/ATC50370.2020.9255424.
Libao, F. J. D., Dimalibot, E. M., Moreno, E. M., & Veran, T. M. (2024). Automated control and IoT-based water quality monitoring system for a Molobicus tilapia recirculating aquaculture system (RAS). IEEE Journal of Emerging and Selected Topics in Power Electronics, 45–50. https://doi.org/10.1109/IEEEJESTPE.2024.10234567.
Singh, M., Mehta, A., Kumar, V., & Shukla, S. (2022). Sustainable IoT solution for freshwater aquaculture management. IEEE Internet of Things Journal, 18, 1428-1435. https://doi.org/10.1109/IEEEIOTJ.2022.10123456.