Static Analysis of Deep Water Hemi-Ellipsoidal Shells by Higher-Order Shear Deformation Theory

Main Article Content

Pit Nantachaisi
Hathaikan Nandun
Komkorn Chaidachatorn
Weeraphan Jiammeepreecha

Abstract

This paper presents the static response of deep water hemi-ellipsoidal shells. The shell geometry is determined using differential geometry, while the displacement field is derived based on higher-order shear deformation theory. The energy functional of the shell system can be formulated via the principle of virtual work. The numerical results of the static deformed configuration of the hemi-ellipsoidal shells are obtained by the finite element method employing nine-node quadrilateral isoparametric elements. Specifically, this study examines the effects of external hydrostatic pressure on hemi-ellipsoidal shells under various height-to-base radius ratios and support conditions. The results indicate that the displacement response depends on the height-to-base radius ratios of the hemi-ellipsoidal shells. The normal displacement of the hemi-spherical shells is lower than the hemi-oblate and prolate shells at the apex and support, respectively.

Article Details

How to Cite
Nantachaisi, P., Nandun, H., Chaidachatorn, K., & Jiammeepreecha, W. (2025). Static Analysis of Deep Water Hemi-Ellipsoidal Shells by Higher-Order Shear Deformation Theory. Rattanakosin Journal of Science and Technology, 7(3), 286–313. retrieved from https://ph02.tci-thaijo.org/index.php/RJST/article/view/257728
Section
Research Articles

References

Zingoni, A. (2015). Liquid-containment shells of revolution: A review of recent studies on strength, stability and dynamics. Thin Walled Structures, 87, 102-114. https://doi.org/10.1016/j.tws.2014.10.016

Zingoni, A. (2017). Shell structures in civil and mechanical engineering: theory and analysis. ICE Publishing, The Institution of Civil Engineers.

Xie, K., Chen, M., Zhang, L., Li, W., & Dong, W. (2019). A unified semi-analytic method for vibro-acoustic analysis of submerged shells of revolution. Ocean Engineering, 189, 106345. https://doi.org/10.1016/j.oceaneng.2019.106345

Huang, H., Zou, M.S., & Jiang, L.W. (2021). Analysis of characteristic of acoustic radiation from axisymmetric pressure-resistant egg-shaped shells in the ocean environment. Applied Ocean Research, 116, 102890. https://doi.org/10.1016/j.apor.2021.102890

Malekzadeh Fard, K. & Baghestani, A.M. (2017). Free vibration analysis of deep doubly curved open shells using the Ritz method. Aerospace Science and Technology, 69, 136-148. https://doi.org/10.1016/j.ast.2017.06.021

Jiammeepreecha, W., Chaidachatorn, K., Tiyasangthong, S., & Jamnam, S. (2023). Nonlinear static analysis of egg-shaped toroidal shells under internal pressure. Rattanakosin journal of science and technology (RJST), 5(3), 14-36. (in Thai).

Krivoshapko, S.N. (2007). Research on general and axisymmetric ellipsoidal shells used as domes, pressure vessels, and tanks. Applied Mechanics Reviews, 60(6), 336-355. https://doi.org/10.1115/1.2806278

Zingoni, A. (1995). Stress analysis of a storage vessel in the form of a complete triaxial ellipsoid: hydrostatic effects. International Journal of Pressure Vessels and Piping, 62(3) 269-279. https://doi.org/10.1016/0308-0161(94)00020-J

Ross, C.T.F., & Etheridge, J. (2000). The buckling and vibration of tube-stiffened axisymmetric shells under external hydrostatic

pressure. Ocean Engineering, 27(12), 1373-1390. https://doi.org/10.1016/S0029-8018(99)00047-5

Ross, C.T.F., Youster, P., & Sadler, R. (2001). The buckling of plastic oblate hemi-ellipsoidal dome shells under external hydrostatic pressure. Ocean Engineering, 28(7), 789-803. https://doi.org/10.1016/S0029-8018(00)00035-4

Ross, C.T.F., Köster, P., Little, A.P.F., & Tewkesbury, G. (2007). Vibration of a thin-walled prolate dome under external water pressure. Ocean Engineering, 34(3), 560-575. https://doi.org/10.1016/j.oceaneng.2006.01.013

Smith, P., & Błachut, J. (2008). Buckling of externally pressurized prolate ellipsoidal domes. Journal of Pressure Vessel Technology, 130(1), 011210. http://dx.doi.org/10.1115/1.2834457

Tangbanjongkij, C., Chucheepsakul, S., & Jiammeepreecha, W. (2019). Large displacement analysis of ellipsoidal pressure vessel heads using the fundamental of differential geometry. International Journal of Pressure Vessels and Piping, 172, 337-347.

https://doi.org/10.1016/j.ijpvp.2019.04.001

Barathan, V., & Rajamohan, V. (2022). Nonlinear buckling analysis of a semi-elliptical dome: numerical and experimental investigations. Thin-Walled Structures, 171, 108708. https://doi.org/10.1016/j.tws.2021.108708

Chanto, K., Pulngern, T., Tangbanjongkij, C., Jiammeepreecha, W., & Chucheepsakul, S. (2023). Effect of bending rigidity and nonlinear strains on free vibration of hemi-ellipsoidal shells. Journal of Vibration and Acoustics, 145(5), 051004. https://doi.org/10.1115/1.4063114

Chanto, K., Pulngern, T., Tangbanjongkij, C., Jiammeepreecha, W., & Chucheepsakul, S. (2024). Analytical solution and buckling of hemi-ellipsoidal shell structures of revolution under uniformly distributed load. International Journal of Structural Stability and Dynamics, 24(3), 2450026. https://doi.org/10.1142/S0219455424500263

Kerdsuk, P., Pulngern, T., Tangbanjongkij, C., Chucheepsakul, S., & Jiammeepreecha, W. (2024). Elastic buckling of oblate hemi-ellipsoidal shells subjected to hydrostatic pressure. International Journal of Structural Stability and Dynamics, 24(3), 2450028.

https://doi.org/10.1142/S0219455424500287

Tangbanjongkij, C., Chucheepsakul, S., & Jiammeepreecha, W. (2020). Analytical and numerical analyses for a variety of submerged hemi-ellipsoidal shells. Journal of Engineering Mechanics, 146(7), 04020066. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001795

Kar, V.R., Mahapatra, T.R., & Panda, S.K. (2015). Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels. Composite Structures, 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125

Jiammeepreecha, W., Chaidachatorn, K., Phungpaingam, B., Klaycham, K., & Chucheepsakul, S. (2025). Effective nonlocal finite element formulation for free vibration analysis of S-FGM doubly curved nanoshells based on linear strain–displacement relations using TSDT. Computers and Mathematics with Applications, 179, 77-102. https://doi.org/10.1016/j.camwa.2024.11.021

Langhaar, H.L. (1964). Foundations of practical shell analysis. University of Illinois at Urbana-Champaign.

Jiammeepreecha, W., Chaidachatorn, K., Phungpaingam, B., Klaycham, K., & Chucheepsakul, S. (2024). Free vibration analysis of FGM spherical and elliptical shells under nonlinear thermal environments. Thin-Walled Structures, 196, 111497. https://doi.org/10.1016/j.tws.2023.111497

Langhaar, H.L. (1962). Energy methods in applied mechanics. John Wiley & Sons.

Kar, V.R., & Panda, S.K. (2015). Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method. Composite Structures, 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006

Cook, R.D., Malkus, D.S., Plesha, M.E., & Witt, R.J. (2002). Concepts and applications of finite element analysis. John Wiley & Sons.

Qatu, M.S. (2004). Vibration of laminated shells and plates. Academic Press Inc.

Reddy, J.N. (2004). Mechanics of laminated composite: plates and shells—theory and analysis. CRC Press.

Nath Thakur, S., & Ray, C. (2021). Static and free vibration analyses of moderately thick hyperbolic paraboloidal cross ply laminated composite shell structure. Structures, 32, 876-888. https://doi.org/10.1016/j.istruc.2021.03.066

Young, W.C., & Budynas RG. (2002), Roark’s formulas for stress and strain. McGraw-Hill.