Perimetric Contraction on Quadrilaterals

Main Article Content

Anish Banerjee
Pratikshan Mondal
Lakshmi Kanta Dey

Abstract

In this article, we introduce a four point analogue of the Banach contraction principle and establish sufficient conditions for such mappings to possess fixed point(s) in complete metric spaces. Notably, the classical Banach contraction principle emerges as a special case of our results. We present several non-trivial examples that not only validate our theorems but also reveal that quadrilateral perimetric contractions need not imply other well-known contraction types. Furthermore, we extend our analysis to obtain fixed point theorems in non-complete metric spaces. Lastly, we address a recent result linking mappings contracting the perimeters of triangles in metric spaces to Banach-type contractions in 𝐚-metric spaces.

Article Details

How to Cite
Anish Banerjee, Pratikshan Mondal, & Lakshmi Kanta Dey. (2025). Perimetric Contraction on Quadrilaterals. Science & Technology Asia, 30(4), 55–67. retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/259111
Section
Physical sciences

References

Banach S. Sur les opÃĐrations dans les ensembles abstraits et leur application aux ÃĐquations intÃĐgrales. Fund Math. 1922Íū3:133-81.

Nadler SB. Multivalued contraction mappings. Pac J Math. 1969Íū30(2):475-88.

Kirk WA. A fixed point theorem for mappings which do not increase distances. The American Mathematical Monthly. 1965Íū72(9):1004-6.

Berinde V, Păcurar M. Approximating fixed points of enriched contractions in Banach spaces. J Fixed Point Theory Appl. 2020Íū22:38.

Browder FE. The fixed point theory of multi-valued mappings in topological vector spaces. Math Ann. 1968Íū177:283-301.

Wardowski D. Fixed points of new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012Íū2012(94).

Khojasteh F, Shukla S, Radenović S. A new approach to the study of fixed point theory for simulation functions. Filomat. 2015Íū29(6):1189-94.

Senapati T, Dey LK, Chanda A, Huang H. Some non-unique fixed point or periodic point results in JS-metric spaces. J Fixed Point Theory Appl. 2019Íū21(2):1-15.

Kannan R. Some results on fixed points. Bull Calcutta Math Soc. 1968Íū60:71-6.

Chatterjea SK. Fixed-point theorems. C R Acad Bulgare Sci. 1972Íū25:727-30.

Das P, Dey LK. Fixed point of contractive mappings in generalized metric spaces. Math Slovaca. 2009Íū59(4):499-504.

Jleli M, Samet B. A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015Íū2015:61.

KarapÄąnar E, O’Regan D, RoldÃĄn-LÃģpezde-Hierro AF, Shahzad N. Fixed point theorems in new generalized metric spaces. J Fixed Point Theory Appl. 2016Íū18(3):645-71.

Petrov E. Fixed point theorem for mappings contracting perimeters of triangles. J Fixed Point Theory Appl. 2023Íū25(3):74.

Petrov E, Bisht RK. Fixed point theorem for generalized Kannan type mappings. Rend Circ Mat Palermo, II Ser. 2024:1-18.

Păcurar CM, Popescu O. Fixed point theorem for generalized Chatterjea type mappings. Acta Math Hungar. 2024Íū1-10.

KarapÄąnar E. On the novelty of “Contracting Perimeters of Triangles in Metric Space”. Results in Nonlinear Analysis. 2025Íū8(1):115-23.