Perimetric Contraction on Quadrilaterals

Main Article Content

Anish Banerjee
Pratikshan Mondal
Lakshmi Kanta Dey

Abstract

In this article, we introduce a four-point analogue of the Banach contraction principle and establish sufficient conditions for such mappings to possess fixed point(s) in complete metric spaces. Notably, the classical Banach contraction principle emerges as a special case of our results. We present several non-trivial examples that not only validate our theorems but also reveal that quadrilateral perimetric contractions need not imply other well-known contraction types. Furthermore, we extend our analysis to obtain fixed point theorems in non-complete metric spaces. Lastly, we address a recent result linking mappings contracting the perimeters of triangles in metric spaces to Banach-type contractions in 𝐚-metric spaces.

Article Details

How to Cite
Anish Banerjee, Pratikshan Mondal, & Lakshmi Kanta Dey. (2025). Perimetric Contraction on Quadrilaterals. Science & Technology Asia, 30(4), 55–67. retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/259111
Section
Physical sciences

References

Banach S. Sur les opÃĐrations dans les ensembles abstraits et leur application aux ÃĐquations intÃĐgrales. Fund Math. 1922Íū3:133-81.

Nadler SB. Multivalued contraction mappings. Pac J Math. 1969Íū30(2):475-88.

Kirk WA. A fixed point theorem for mappings which do not increase distances. The American Mathematical Monthly. 1965Íū72(9):1004-6.

Berinde V, Păcurar M. Approximating fixed points of enriched contractions in Banach spaces. J Fixed Point Theory Appl. 2020Íū22:38.

Browder FE. The fixed point theory of multi-valued mappings in topological vector spaces. Math Ann. 1968Íū177:283-301.

Wardowski D. Fixed points of new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012Íū2012(94).

Khojasteh F, Shukla S, Radenović S. A new approach to the study of fixed point theory for simulation functions. Filomat. 2015Íū29(6):1189-94.

Senapati T, Dey LK, Chanda A, Huang H. Some non-unique fixed point or periodic point results in JS-metric spaces. J Fixed Point Theory Appl. 2019Íū21(2):1-15.

Kannan R. Some results on fixed points. Bull Calcutta Math Soc. 1968Íū60:71-6.

Chatterjea SK. Fixed-point theorems. C R Acad Bulgare Sci. 1972Íū25:727-30.

Das P, Dey LK. Fixed point of contractive mappings in generalized metric spaces. Math Slovaca. 2009Íū59(4):499-504.

Jleli M, Samet B. A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015Íū2015:61.

KarapÄąnar E, O’Regan D, RoldÃĄn-LÃģpezde-Hierro AF, Shahzad N. Fixed point theorems in new generalized metric spaces. J Fixed Point Theory Appl. 2016Íū18(3):645-71.

Petrov E. Fixed point theorem for mappings contracting perimeters of triangles. J Fixed Point Theory Appl. 2023Íū25(3):74.

Petrov E, Bisht RK. Fixed point theorem for generalized Kannan type mappings. Rend Circ Mat Palermo, II Ser. 2024:1-18.

Păcurar CM, Popescu O. Fixed point theorem for generalized Chatterjea type mappings. Acta Math Hungar. 2024Íū1-10.

KarapÄąnar E. On the novelty of “Contracting Perimeters of Triangles in Metric Space”. Results in Nonlinear Analysis. 2025Íū8(1):115-23.