Performance of Some Biasing Parameter Estimates for Liu Estimator in Linear Regression Model with Multicollinearity

Authors

  • Wirawan Puttamat Department of Mathematics, Faculty of Education, Chaiyaphum Rajabhat University

Keywords:

linear regression, multicollinearity, mean square error, Liu estimator, biasing parameter

Abstract

In multiple linear regression models, the multicollinearity occurs when the explanatory variables in a regression model are correlated. The multicollinearity effects on the ordinary least squares estimation method since the estimated regression coefficients become unstable and difficult to interpret in the presence of multicollinearity. In order to mitigate the problem of multicollinearity, Liu regression is widely used as a biased method of estimation with biasing parameter . The purpose of this research is to investigate the performance of some biasing parameter estimates in Liu regression in the presence of moderate to high correlation among the explanatory variables. The simulation study and application using real data  have been performed to evaluate the performance of these biasing parameter estimation methods due to the mean squared errors (MSE). Based on the results from the simulation and application using real data, it can be concluded that the estimators D8, D9, D13 and D15 have a better performance for Liu regression.

References

Liu, K. (1993). A new class of biased estimate in linear regression. Communications in Statistics Methods, 22(2), 393–402.

Babar, I., AyedID, H., Chand S., Suhail M., KhanID, A. Y., Marzouki R. (2021). Modified Liu estimators in the linear regression model: An application to Tobacco data. PLOS JOURNALS, November 22. doi:10.1371/journal.pone.0259991.

Damodar N. Gujarati. (2009). Basic Econometrics. Tata McGraw-Hill Education.

Hoerl, Arthur E., and Robert W. Kennard. (1970). Ridge regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55 – 67.

Qasim, M., Amin, M., and Omer, T. (2020). Performance of some new liu parameters for the linear regression model. Communications in Statistics Theory and Methods, 49(17), 4178–4196.

Khalaf G. and Shukur G. (2005). Choosing ridge parameters for regression problems. Communications in Statistics-Theory and Methods, 34(5). 1177–1182.

Shukur, G., Månsson, K., and Sjölander P. (2015). Developing interaction shrinkage parameters for the Liu estimator with an application to the electricity retail market. Computational Economics, 46(4), 539–550.

Suhail, M., Babar I., Khan Y. A., Imran M. and Nawaz, Z. (2021). Quantile-Based Estimation of Liu Parameter in the Linear Regression Model: Applications to Portland Cement and US Crime Data. Mathematical Problems in Engineering, Volume 2021. doi: 10.1155/2021/1772328.

Kibria, B. M. G. (2003). Performance of some new ridge regression estimators. Communications in Statistics Simulation and Computation, 32(2), 419–435.

McDonald, G. C. and Galarneau, D. I. (1975). A Monte Carlo evaluation of some ridge-type estimators. Journal of the American Statistical Association, 70(350), 407–416.

Suhail, M. and Chand, S. (2019). Performance of some new ridge regression estimators. Proceedings of the 2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics, 1–4. doi: 10.1109/MACS48846.2019.9024784.

Ayanullah, M. S. and Ilyas, M. (2017). Modified method for choosing ridge parameter. Journal of Statistics, 24, 20–34.

Woods H., Steinour H. H. and Starke H. R. (1932). Effect of composition of Portland cement on heat evolved during hardening. Industrial & Engineering Chemistry, 24(11), 1207– 1214.

Kaciranlar, S., Sakallioglu, S., Akdeniz, F., Styan, G.P.H. and Werner, H.J. (1999). A New Biased Estimator in Linear Regression and a Detailed Analysis of the Widely Analyzed Dataset on Portland Cement. Indian Journal of Statistics, 12(1), 443-459.

Li Y. and Yang H. (2012). Anew Liu-type estimator in linear regression model. Statistical Papers, 53(2), 427–437.

Lukman, A. F., Ayinde, K., Binuomote, S., & Clement, O. A. (2019). Modified ridge-type estimator to combat multicollinearity: Application to chemical data. Journal of Chemometrics, 33(5), e3125.

Dawouda, I., Mohamed R., Abonazel b. and Fuad A. Awwadc. (2022). Modified Liu estimator to address the multicollinearity problem in regression models: A new biased estimation class. Scientific African, 17. https://doi.org/10.1016/j.sciaf.2022.e01372.

Kibria, B. M. G. and Banik, S. (2017). Some ridge regression estimators and their performances. Journal of Modern Applied Statistical Methods, 15(1), 206–238.

Inan, D., and Erdogan, B. E. (2013). Liu-type logistic estimator. Comm. Statist. Sim. Comp., 42(7), 1578-1586.

Downloads

Published

2023-12-14

How to Cite

Puttamat, W. (2023). Performance of Some Biasing Parameter Estimates for Liu Estimator in Linear Regression Model with Multicollinearity. Journal of Applied Statistics and Information Technology, 8(2), 25–38. Retrieved from https://ph02.tci-thaijo.org/index.php/asit-journal/article/view/250320