การผลิตแบบจำลองระดับท้องน้ำจากภาพถ่ายดาวเทียม กรณีศึกษาท่าเรือน้ำลึก นิคมอุตสาหกรรมมาบตาพุด จังหวัดระยอง

Main Article Content

เทพชัย ศรีน้อย
ถิรวัฒน์ บรรณกุลพิพัฒน์
ไพศาล สันติธรรมนนท์
ประจวบ เรียบร้อย

บทคัดย่อ

แบบจำลองระดับท้องน้ำจากภาพถ่ายดาวเทียมเป็นทางเลือกหนึ่งของการทำข้อมูลค่าระดับบริเวณใกล้ชายฝั่งทะเลที่กว้างขวาง เป็นประโยชน์ต่อการศึกษาลักษณะทางธรณีวิทยา  สภาพแวดล้อมของชายฝั่งทะเล ตลอดจนการจัดการคมนาคมทางเรือบริเวณท่าเรือน้ำลึก ซึ่งค่าระดับบริเวณนั้นจำเป็นต้องลึกกว่าบริเวณชายหาดตามปกติ การศึกษาครั้งนี้เป็นการหาแนวทางการผลิตแบบจำลองจากข้อมูลดาวเทียมเซนทิเนล-2 กับค่าระดับจากเรือหยั่งความลึกบริเวณท่าเรือน้ำลึก นิคมอุตสาหกรรมมาบตาพุด จังหวัดระยอง เลือกภาพที่เหมาะสมในช่วงเวลา 3 เดือน โดยพิจารณาการทำแบบจำลองจากสมการเชิงประจักษ์ของไลเซนก้าและสตัมป์ กับการเลือกใช้ข้อมูลช่วงคลื่นสีน้ำเงิน (แบนด์ที่ 1 กับ 2 จากข้อมูลดาวเทียมเซนทิเนล-2) ที่เหมาะสมเพื่อความถูกต้องของแบบจำลองที่ดีกว่า ผลการศึกษาพบว่า ความถูกต้องของแบบจำลองอยู่ในระดับ 2 – 5 เมตร แบบจำลองอัลกอริทึมของไลเซนก้าได้ผลลัผธ์ใกล้กับอัลกอริทึมของสตัมป์ และแบนด์สีน้ำเงินในแบบแบนด์ที่ 2 ให้ความถูกต้องของแบบจำลองได้ดีกว่าแบบแบนด์ที่ 1 ข้อจำกัดหลักของการทำแบบจำลองในครั้งนี้คือการมีตะกอนในน้ำทะเลจำนวนมากส่งผลทำให้แบบจำลองประมาณความลึกได้น้อยกว่าความลึกในภาคสนาม ส่งผลต่อความถูกต้องที่น้อยลงในพื้นที่การศึกษานี้

Article Details

บท
บทความวิจัย

References

Kiyoshi Horikawa et. al. Nearshore Dynamics and Coastal Processes: Theory, Measurement, And Predictive Models, Tokyo: University of Tokyo Press, 1988.

Parrish, C.E. Magruder, L.A. Neuenschwander, A.L. Forfinski-Sarkozi, N. Alonzo, M. Jasinski, M. Validation of ICESAT-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sensing, 2019, 11 (14). Available from: https://doi.org/10.3390/rs11141634 [Accessed 14 February 2023].

Gottfried Mandlburger. A Review of Active and Passive Optical Methods in Hydrography, 2022. Available from: https://ihr.iho.int/articles/a-review-of-active-and-passive-optical-methods-in-hydrography/ [Accessed 14 February 2023].

Chiang, J.Y., Chen, YC., Chen, YF. Underwater Image Enhancement: Using Wavelength Compensation and Image Dehazing (WCID), 2011. Available from https://doi.org/10.1007/978-3-642-23687-7_34 [Accessed 14 February 2023].

Duplanˇci´c Leder, T. Bauˇci´c, M. Leder, N. and Gili´c, F. Optical Satellite-derived Bathymetry: An Overview and WoS and Scopus Bibliometric Analysis. Remote Sensing, 2023, 15(5):1294. Available from: https://doi.org/10.3390/rs15051294 [Accessed 14 February 2023].

ชนัตถพงศ์ เสืองามเอี่ยม และ ศิริวิไล ธีระโรจนารัตน์. การหยั่งความลึกน้ำทะเลจากการรับรู้ะยะไกลในอ่าวไทยด้วยภาพถ่ายดาวเทียมแลนด์แซท 8. วารสารวิชาการโรงเรียนนายเรือ ด้านวิทยาศาสตร์และเทคโนโลยี ปีที่ 5 ฉบับที่ 1, 2565.

Ashphaq, M. Srivastava, P.K. and Mitra, D. Review of Near-shore Satellite Derived Bathymetry: Classification and Account of Five Decades of Coastal Bathymetry Research. Journal of Ocean Engineering and Science, 2021, 6 (4), pp. 340-359

Meliala, L. Wibowo, W A and Amalia, J. Satellite Derived Bathymetry on Shallow Reef Platform: A Preliminary Result From Semak Daun, Seribu Islands, Java Sea, Indonesia. The 1st International Conference on Geodesy, Geomatics, and Land Administration, 2019, pp 192-202. DOI: 10.18502/keg.v4i3.5849

Najhan Md Said, Mohd Razali Mahmud and Rozaimi Che Hasan. Satellite-derived Bathymetry: Accuracy Assessment on Depths Derivation Algorithm for Shallow Water Area. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2017.

Gasica, T. A. and Pratomo, D. G. Shallow Waters Depth Estimation Using Empirical Satellite Derived Bathymetry and Sentinel-2 Data, Case Study: East Coastal Waters of Java Island. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2022, pp. 93–99. DOI: 10.5194/isprs-archives-XLIII-B3-2022-93-2022

Lyzenga, D. R. Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Applied Optics, 1978, 17(3), 379–383

Geyman, E.C. and Maloof, A.C. A Simple Method for Extracting Water Depth From Multi Spectral Satellite Imagery in Regions of Variable Bottom Type. Earth and Space Science, 2019, 6, pp. 527–537. https://doi.org/10.1029/2018EA000539

Stumpf, R.P. Holderied, K. and Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 2003, 48(1), pp. 547–556.

Google Developers. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A, 2022. Available from: https://developers.google.com/earth- engine/datasets/catalog/COPERNICUS_S2_SR [Accessed 1 July 2022].

Li, J. Knapp, D.E. Lyons, M. Roelfsema, C. Phinn, S. Schill, S.R. Asner, G.P. Automated Global Shallow Water Bathymetry Mapping Using Google Earth Engine. Remote Sensing, 2021, https://doi.org/10.3390/rs13081469

Vanhellemont, Q. Daily Metre-scale Mapping of Water Turbidity Using Cubesat Imagery. Optics Express, 2019, 27.

Lee, Z. Weidemann, A. Arnone, R. Combined Effect of Reduced Band Number and Increased Bandwidth on Shallow Water Remote Sensing: the Case of Worldview 2. IEEE Transactions on Geoscience and Remote Sensing. 2013, 51 (5), pp. 2577–2586.

Xu, H. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. International Journal of Remote Sensing, 2006, 27(14), pp. 3025–3033.