Bi-Template Assisted Sol-Gel Synthesis of Photocatalytically-Active Mesoporous Anatase TiO2 Nanoparticles

Main Article Content

Abubakar Hamisu
Umar Ibrahim Gaya
Abdul Halim Abdullah

Abstract

Sol-gel mesoporous titanium dioxide powders have been synthesized from chitosan and/or hexadecyltrimethylammonium bromide (HDTMA) and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and N2 adsorption-desorption measurements. The photocatalytic performance of the synthesized meso-TiO2 powders was optimized based on the central composite design (CCD) of methyl orange (MO) degradation under UV light irradiation. The maximum MO degradation was 62.3% over a period of 60 min. Oxides produced using the binary chitosan and HDTMA template (C,H-TiO2) exhibited the relatively higher surface area (99.5 m2/g), smaller crystal size (12.78 nm), narrower band-gap energy (2.92 eV) and higher photocatalytic rate constant (0.0112 min–1) than as those from chitosan (C/TiO2) or HDTMA (H/TiO2) as the template.

Article Details

How to Cite
Hamisu, A., Gaya, U. I., & Abdullah, A. H. (2021). Bi-Template Assisted Sol-Gel Synthesis of Photocatalytically-Active Mesoporous Anatase TiO2 Nanoparticles. Applied Science and Engineering Progress, 14(3), 313–327. https://doi.org/10.14416/j.asep.2021.04.003
Section
Research Articles

References

[1] J. Yang, J. Du, X. Li, Y. Liu, C. Jiang, W. Qi, K. Zhang, C. Gong, R. Li, and M. Luo, “Highly hydrophilic TiO2 nanotubes network by alkaline hydrothermal method for photocatalysis degradation of methyl orange,” Nanomaterials, vol. 9, no. 4, p. 526, 2019, doi: 10.3390/nano9040526.

[2] R. Saravanan, D. Manoj, J. Qin, M. Naushad, F. Gracia, A. F. Lee, M. M. Khan, and M. Gracia- Pinilla, “Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production,” Process Safety and Environmental Protection, vol 120, pp. 339–347, 2018, doi: 10.1016/j.psep.2018.09.015.

[3] M. R. Awual, M. M. Hasan, M. A. Khaleque, and M. C. Sheikh, “Treatment of copper (II) containing wastewater by a newly developed ligand based facial conjugate materials,” Chemical Engineering Journal, vol. 288, pp. 368–376, 2016.

[4] M. R. Awual, M. M. Hasan, M. Naushad, H. Shiwaku, and T. Yaita, “Preparation of new class composite adsorbent for enhanced palladium (II) detection and recovery,” Sensors and Actuators B, vol. 209, pp. 790–797, 2015, doi: 10.1016/j. snb.2014.12.053.

[5] M. Gunay, “Eco-friendly textile dyeing and finishing,” Intechopen, 2013, doi: 10.5772/3436.

[6] L. Bai, S. Wang, Z. Wang, E. Hong, Y. Wang, C. Xia, and B. Wang, “Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO2-SBA-15 nanocatalyst,” Environmental Pollution, vol. 248, pp. 516–525, 2019, doi: 10.1016/j.envpol.2019.02.052.

[7] W. Buraso, V. Lachom, P. Siriya, and P. Laokul, “Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance,” Materials Research Express, vol 5, no. 11, p. 115003, 2018, doi: 10.1088/2053-1591/ aadbf0.

[8] J. Saien and Z. Mesgari, “Photocatalytic degradation of methyl orange using hematoporphyrin/N- doped TiO2 nanohybrids under visible light: Kinetics and energy consumption,” Applied Organomettalic Chemistry, vol. 31, no. 11, p. ee3755, 2017, doi: 10.1002/aoc.3755.

[9] E. Kusiak-Nejman and A. W. Morawski, “TiO2/ graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance,” Applied Catalysis B: Environmental, vol. 253, pp. 179–186, 2019, doi: 10.1016/j.apcatb.2019. 04.055.

[10] S. Mallakpour and E. Nikkhoo, “Surface modification of nano-TiO2 with trimellitylimidoamino acid-based diacids for preventing aggregation of nanoparticles,” Advanced Powder Technology, vol. 25, pp. 348–353, 2014. doi: 10.1016/j.apt.2013.05.017.

[11] N. Raza, W. Raza, H. Gul, M. Azam, J. Lee, K. Vikrant, and K. H. Kim, “Solar-light active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye,” Journal of Cleaner Production, vol. 254, p. 120031, 2020, doi: 10.1016/j.jclepro. 2020.120031.

[12] D. Chen , Y. Cheng , N. Zhou , P. Chen , Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, and R. Ruan, “Photocatalytic degradation of organic pollutants using TiO2- based photocatalysts: A review,” Journal of Cleaner Production, vol. 268, p. 121725, 2020, doi: 10.1016/j.jclepro.2020.121725.

[13] M. Humayun, F. Raziq, A. Khan, and W. Luo, “Modification strategies of TiO2 for potential applications in photocatalysis: A critical review” Green Chemistry Letters and Reviews, vol. 11, pp. 86–102, 2018, doi: 10.1080/17518253.2018. 1440324.

[14] M. R. Al-Mamun, S. Kader, M. S. Islam, M. Z. H. Khan, M. R. Al-Mamun, S. Kaderb, M. S. Islam, and M. Z. H. Khan, “Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review” Journal of Environmental Chemical Engineering, vol. 7, p. 103248, 2019, doi: 10.1016/ j.jece.2019.103248.

[15] D. G. Shchukin, J. H. Schattka, M. Antonietti, and R. A. Caruso, “Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template,” Journal of Physical Chemistry B, vol. 107, no. 4, pp. 952–957, 2003. doi: 10.1021/jp026929i.

[16] L. H. Kao, T. C. Hsu, and K. K. Cheng, “Novel synthesis of high-surface-area ordered mesoporous TiO2 with anatase framework for photocatalytic applications,” Journal of Colloid and Interface Science, vol. 341, no. 2, pp. 359–365, 2010, doi: 10.1016/j.jcis.2009.09.058.

[17] D. Grosso, G. J. d. A. A. Soler-Illia, E. L. Crepaldi, F. Cagnol, C. Sinturel, A. Bourgeois, A. Brunet- Bruneau, H. Amenitsch, P. A. Albouy, and C. Sanchez, “Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700°C,” Chemistry of Materials, vol. 15, no. 24, pp. 4562–4570, 2003, doi: 10.1021/cm031060h.

[18] D. M. Antonelli and J. Y. Ying, “Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method,” Angewandte Chemie, International Edition in English, vol. 34, no. 18, pp. 2014–2017, 1995, doi: 10.1002/anie.199520141.

[19] T. Preethi, B. Abarna, and G. R. Rajarajeswari, “Influence of chitosan–PEG binary template on the crystallite characteristics of sol–gel synthesised mesoporous nanotitania photocatalyst,” Applied Surface Science, vol. 317, pp. 90–97, 2014, doi: 10.1016/j.apsusc.2014.10.002.

[20] J. Ramos, I. Mejia, J. Murphy, M. Quevedo, P. Garcia, and C. Martinez, “Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites,” Journal of Alloys and Compounds, vol. 643, no. 1, pp. S84–S89, 2015, doi: 10.1016/j.jallcom.2014. 09.201.
[21] K. Ö. Hamaloğlu, B. Çelebi, E. Sağ, and A. Tuncel, “A new method for the synthesis of monodisperse-porous titania microbeads by using polymethacrylate microbeads as template,” Microporous and Mesoporous Materials, vol. 207, pp. 17–26, 2015, doi: 10.1016/j.micromeso. 2015.01.001.

[22] X. Chen, D.-H. Kuo, D. Lu, Y. Hou, and Y.-R. Kuo, “Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template,” Microporous and Mesoporous Materials, vol. 223, no. 145–151, 2016, doi: 10.1016/j.micromeso.2015.11.005.

[23] E. Ovodok, H. Maltanava, S. Poznyak, M. Ivanovskaya, A. Kudlash, N. Scharnagl, and J. Tedim, “Sol-gel template synthesis of mesoporous carbon-doped TiO2 with photocatalytic activity under visible light,” Materials Today: Proceedings, vol. 5, no. 9, pp. 17422–17430, 2018, doi: 10.1016/j. matpr.2018.06.044.
[24] B. Niu, X. Wang, K. Wu, X. He, and R. Zhang, “Mesoporous titanium dioxide: Synthesis and applications in photocatalysis, energy and biology,” Materials, vol. 11, no. 10, p. 1910, 2018, doi: 10.3390/ ma11101910.

[25] A. Hamisu, U. I. Gaya, and A. H. Abdullah, “A novel poly (vinyl alcohol) post-precipitation template synthesis and property tuning of photoactive mesoporous nano-TiO2,” Physical Chemistry Research, vol. 8, no. 2, pp. 281–295, 2020, doi: 10.22036/PCR.2020.210668.1704.
[26] W. Li, Z. Wu, J. Wang, A. A. Elzatahry, and D. Zhao, “A perspective on mesoporous TiO2 materials,” Chemistry of Materials, vol. 26, no. 1, pp. 287– 298, 2013, doi: 10.1021/cm4014859.

[27] M. E. Davis, “Ordered porous materials for emerging applications,” Nature, vol. 417, no. 813– 821, 2002, doi: 10.1038/nature00785.

[28] T. P. Braga, E. C. C. Gomes, A. F. de Sousa, N. L. V. Carreño, E. Longhinotti, and A. Valentini, “Synthesis of hybrid mesoporous spheres using the chitosan as template,” Journal of Non-Crystalline Solids, vol. 355, no. 14–15, pp. 860–866, 2009, doi: 10.1016/j.jnoncrysol.2009.04.005.

[29] Z. Abou-Gamra and M. Ahmed, “Synthesis of mesoporous TiO2–curcumin nanoparticles for photocatalytic degradation of methylene blue dye,” Journal of Photochemistry and Photobiology B, vol. 160, no. 134–141, 2016, doi: 10.1016/j. jphotobiol.2016.03.054.

[30] T. Witoon, M. Chareonpanich, and J. Limtrakul, “Synthesis of bimodal porous silica from rice husk ash via sol–gel process using chitosan as template,” Materials Letters, vol. 62, no. 10– 11, pp. 1476–1479, 2018, doi: 10.1016/j.matlet. 2007.09.004.

[31] K. C. L. Khang, M. H. M. Hatta, S. L. Lee, and L. Yuliati, “Photocatalytic removal of phenol over mesoporous ZnO/TiO2 composites,” Jurnal Teknologi, vol. 80, no. 2, pp. 153–160, 2018, doi: 10.11113/jt.v80.11209.

[32] G. He, J. Zhang, Y. Hu, Z. Bai, and C. Wei, “Dual-template synthesis of mesoporous TiO2 nanotubes with structure-enhanced functional photocatalytic performance,” Applied Catalysis, B, vol. 250, pp. 301–312, 2019, doi: 10.1016/j. apcatb.2019.03.027.

[33] P. Messina, M. A. Morini, and P. C. Schulz, “Siliceous mesoporous material templated with hexadecyltrimethylammonium bromide–sodium dehydrocholate mixed micelles,” Colloid and Polymer Science, vol. 282, pp. 1063–1066, 2004, doi: 10.1007/s00396-003-1034-7.

[34] J. Wei, Z. Sun, W. Luo, Y. Li, A. A. Elzatahry, A. M. Al-Enizi, Y. Deng, and D. Zhao, “New insight into the synthesis of large-pore ordered mesoporous materials,” Journal of the American Chemical Society, vol. 139, pp. 1706–1713, 2017, doi :10.1021/jacs.6b11411.

[35] U. I. Gaya, A. H. Abdullah, Z. Zainal, and M. Z. Hussein, “Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 57–63, 2009, doi: 10.1016/j.jhazmat. 2009.01.130.

[36] A. H. Jawad, A. F. M. Alkarkhi, and N. S. A. Mubarak, “Photocatalytic decolorization of methylene blue by an immobilized TiO2 film under visible light irradiation: Optimization using response surface methodology (RSM),” Desalination and Water Treatment, vol. 56, no. 1, pp. 161–172, 2015, doi: 10.1080/19443994.2014.934736.

[37] L. Cano-Casanova, A. Amorós-Pérez, M. Ouzzine, M. A. Lillo-Ródenas, and M. C. Román-Martínez, “One step hydrothermal synthesis of TiO2 with variable HCl concentration: Detailed characterization and photocatalytic activity in propene oxidation,” Applied Catalysis, B, vol. 220, pp. 645–653, 2018, doi: 10.1016/j.apcatb.2017.08.060.

[38] M. M. Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, and K. Sopian, “Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation,” International Journal of Electrochemical Science, vol. 7, pp. 4871–4888, 2012, doi: 10.1.1.470.8294.

[39] J. Chang, W. Zhang, and C. Hong, “Templatedirected fabrication of anatase TiO2 hollow nanoparticles and their application in photocatalytic degradation of methyl orange,” Chinese Journal of Chemistry, vol. 35, no. 6, pp. 1016–1022, 2017, doi: 10.1002/cjoc.201600890.

[40] M. Feilizadeh, M. Vossoughi, S. M. E. Zakeri, and M. Rahimi, “Enhancement of efficient Ag–S/TiO2 nanophotocatalyst for photocatalytic degradation under visible light,” Industrial & Engineering Chemistry Research, vol. 53, no. 23, pp. 9578–9586, 2014, doi: 10.1007/s11164-013- 1519-z.

[41] M. A. A. Sadatlu and N. Mozaffari, “Synthesis of mesoporous TiO2 structures through P123 copolymer as the structural directing agent and assessment of their performance in dye-sensitized solar cells,” Solar Energy, vol. 133, no. 24–34, 2016, doi: 10.1016/j.solener.2016.03.056.

[42] X. Chen, D. H. Kuo, and D. Lu, “N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light,” Chemical Engineering Journal, vol. 295, pp. 192–200, 2016, doi: 10.1016/j.cej.2016.03.047.

[43] T. Huang, S. Mao, J. Yu, Z. Wen, G. Lu, and J. Chen, “Effects of N and F doping on structure and photocatalytic properties of anatase TiO2 nanoparticles,” RSC Advances, vol. 3, pp. 16657– 16664, doi: 10.1039/C3RA42600A.

[44] T. Diaconu, M. Ciobanu, G. Petcu, D. Culita, S. Preda, J. Pandele-Cusu, M. Mureseanu, and V. Parvulescu, “Cerium modified mesoporous TiO2 photocatalyst obtained by sol-gel method,” Revue Roumaine de Chimie, vol. 63, no. 5–6, pp. 467–474, 2018.

[45] A. Maddu, R. Purwati, and M. Kurniat, “Effects of poly-ethylene glycol (PEG) template on structural and optical properties of nanocrystalline titanium dioxide (TiO2) films,” Journal of Ceramic Processing Research, vol. 17, pp. 360–364, 2016, doi: 10.1380/ejssnt.2012.103.

[46] P. V. Bakre and S. Tilve, “Direct access to highly crystalline mesoporous nano TiO2 using sterically bulky organic acid templates,” Journal of Physics and Chemistry of Solids, vol. 116, pp. 234–240, 2018, doi: 10.1016/j.jpcs.2018.01.043.

[47] K. Thamaphat, P. Limsuwan, and B. Ngotawornchai, “Phase characterization of TiO2 powder by XRD and TEM,” Kasetsart Journal (Natural Science), vol. 42, no. 5, pp. 357–361, 2008,doi: 10.1016/j. clinbiochem.2011.08.962.

[48] X. Zhao, P. Wu, M. Liu, D. Lu, J. Ming, C. Li, J. Ding, Q. Yan, and P. Fang, “Y2O3 modified TiO2 nanosheets enhanced the photocatalytic removal of 4-chlorophenol and Cr (VI) in sun light,” Applied Surface Science, vol. 410, pp. 134–144, 2017, doi: 10.1016/j.apsusc.2017.03.073.

[49] S. A. Salman, N. A. Bakr, and S. S. Abduallah, “Study of thermal decomposition and FTIR for PVAAlCl composite films,” Journal of Engineering and Applied Sciences, vol. 14, no. 3, pp. 717–724, 2019, doi: 10.36478/jeasci.2019.717.724.

[50] F. Houhoune, D. Nibou, S. Chegrouche, and S. Menacer, “Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species,” Journal of Environmental Chemical Engineering, vol. 4, no. 3, pp. 3459–3467, 2016, doi: 10.1016/j.jece.2016.07.018.

[51] Y. Xi, M. Mallavarapu, and R. Naidu, “Preparation, characterization of surfactants modified clay minerals and nitrate adsorption,” Applied Clay Science, vol. 48, no. 1–2, pp. 92–96, 2010, doi: 10.1016/j.clay.2009.11.047.

[52] J. Zawadzki and H. Kaczmarek, “Thermal treatment of chitosan in various conditions, Carbohydrate Polymers, vol. 80, no. 2, pp. 394–400, 2010, doi: 10.1016/j.carbpol.2009.11.037.

[53] C. Peniche-Covas, W. Argüelles-Monal, and J. San Román, “A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan,” Polymer Degradation and Stability, vol. 39, no. 1, pp. 21–28, 1993, doi: 10.1016/0141-3910(93)90120-8.

[54] W. Payakgul, O. Mekasuwandumrong, V. Pavarajarn, and P. Praserthdam, “Effects of reaction medium on the synthesis of TiO2 nanocrystals by thermal decomposition of titanium (IV) n-butoxide,” Ceramics International, vol. 31, no. 3, pp. 391– 397, 2005, doi: 10.1016/j.ceramint.2004.05.025.

[55] M. Gao, L. Zhu, W. L. Ong, J. Wang, and G. W. Ho, “Structural design of TiO2-based photocatalyst for H2 production and degradation applications,” Catalysis Science & Technology, vol. 5, no. 10, pp. 4703–4726, 2015, doi: 10.1039/C5CY00879D.

[56] T. Lv, L. Pan, X. Liu, and Z. Sun, “Visible-light photocatalytic degradation of methyl orange by CdS-TiO2–Au composites synthesized via microwave-assisted reaction,” Electrochimica Acta, vol. 83, pp. 216–220, 2012, doi: 10.1016/j. electacta.2012.08.018.

[57] A. N. Ökte and Ö. Yılmaz, “Photodecolorization of methyl orange by yttrium incorporated TiO2 supported ZSM-5”, Applied Catalysis B, vol. 85, no. 1–2, pp. 92–102, 2018, doi: 10.1016/j.apcatb. 2008.07.025.

[58] L. Alidokht, A. R. Khataee, A. Reyhanitabar, and S. Oustan, “Cr (VI) immobilization process in a Cr-spiked soil by zerovalent iron nanoparticles: Optimization using response surface methodology,” Clean: Soil, Air, Water, vol. 39, no. 7, pp. 633– 640, 2011, doi: 10.1002/clen.201000461.

[59] P. Chawla, S. K. Sharma, and A. P. Toor, “Optimization and modeling of UV-TiO2 mediated photocatalytic degradation of golden yellow dye through response surface methodology,” Chemical Engineering Communication, vol. 206, no. 9, pp. 1123–1138, 2019, doi: 10.1080/ 00986445.2018.1550392.

[60] H. Zangeneh, A. A. Zinatizadeh, S. Zinadinia, M. Feyzib, E. Rafieec, and D. W. Bahnemann, “A novel L-Histidine (C, N) codoped-TiO2-CdS nanocomposite for efficient visible photo degradation of recalcitrant compounds from wastewater,” Journal of Hazardous Materials, vol. 369, no. 384–397, 2019, doi: 10.1016/j. jhazmat.2019.02.049.