Haematological Profiles and Histological Investigations of Two Freshwater Fishes: Nile Tilapia (Oreochromis niloticus) and Hybrid Catfish (Clarias macrocephalus x Clarias gariepinus)

Main Article Content

Duangkamolwan Kobkanta

Abstract

Water pollution degrades aquatic ecosystems and also adversely affects freshwater teleosts. To assess the health status of Nile tilapia (Oreochromis niloticus) and hybrid catfish (Clarias macrocephalus x Clarias gariepinus), which are economically important fishes in Thailand, blood profiles and histological changes in the vital organs were examined. Haematological characteristics were studied including total red blood cell count, white blood cell count, haematocrit, haemoglobin concentration, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, and differential white blood cells. The occurrences of micronuclei, immature erythrocyte and nuclear abnormality were also measured. Histological changes were observed in liver and kidney under a light microscope. The results showed that the Nile tilapia had higher values of red blood cell indices than those of the hybrid catfish, but not red blood cell count and mean corpuscular haemoglobin concentration. In additional, Nile tilapia had more micronuclei and abnormal nuclei than the hybrid catfish. In contrast, the number of leukocytes in the hybrid catfish was higher than in Nile tilapia. Pathological alterations such as vacuolization, necrosis, haemorrhage, blood congestions and Kupffer cell aggregations were recognised in hepatic tissues. These histological changes were more severe in the hybrid catfish than those in Nile tilapia. Shrunken glomerulus, detached tubular cells, blood congestions and leukocyte infiltrations were found in renal tissues of both fishes. From our results we suggest that the alterations in haematological indices as well as in liver and kidney tissues of these fishes were the result of physiological responses to stress conditions in their habitats.


 


 

Article Details

How to Cite
(1)
Kobkanta, D. Haematological Profiles and Histological Investigations of Two Freshwater Fishes: Nile Tilapia (Oreochromis Niloticus) and Hybrid Catfish (Clarias Macrocephalus X Clarias Gariepinus). Microsc. Microanal. Res. 2018, 31, 1-8.
Section
Original Articles

References

1. Goksoyr, A. Husoy, H. Larsen, J. Klungsoyr, S. Wilhelmsen, A. Maage, E. Brevik, T. Andersson, M. Celander, M. Pesonen, L. Förlin, Environmental contaminants and biochemical responses in flatfish from the Hvaler Archipelago in Norway, Arch. Environ. Contam. Toxicol., 1991, 21, 486-496.

2. U.U. Gabriel, G.N.O. Ezeri, O.O. Opabunmi, Influence of sex, source, health status and acclimation on the haematology of Clarias gariepinus (Burch, 1822), Afr. J. Biotechnol., 2004, 3, 463-467.

3. A. Ivanc, E. Hasković, S. Jeremić, R. Dekić, Hematological evaluation of welfare and health of fish, Praxis veterinaria, 2005, 53, 191-202.

4. M. Tavares-Dias, F.R. Moraes, Leukocyte and thrombocyte reference values for channel catfish (Ictalurus punctatus Raf.), with an assessment of morphological, cytochemical, and astructural features, Vet. Clin. Pathol., 2007, 36, 49-54.

5. R.M.G. Wells, J. Baldwins, R.S. Seymour, K. Christian, T. Brittain, Red blood cell function and haematology in two tropical freshwater fishes from Australia, Comp. Biochem. Physiol. A., 2005, 141, 87-93.

6. R. Ullah, A. Zuberi, M. Naeem, S. Ullah, Toxicity to hematology and morphology of liver, brain and gills during acute exposure of Mahseer (Tor putitora) to cypermethrin, Int. J. Agric. Biol., 2015, 17, 199-204.

7. Jayaprakash, N. Shettu, Changes in the hematology of the freshwater fish, Channa punctatus (Bloch) exposed to the toxicity of deltamethrin, J. Chem. Pharm. Res., 2013, 5, 178-183.

8. M. Kandari, J.V.S. Rauthan, Hematological changes in fish Mastacembelus armatus (Lacepede) of Song River, Sch. Acad. J. Biosci., 2015, 3, 34-37.

9. L.L. Correa, L.A.D. Bastos, P.S. Ceccarelli, N.S. Dos Reis, Hematological and histopathological changes in Hoplias malabaricus from the Sao Francisco River, Brazil caused by larvae of Contracaecum sp. (Nematoda, Anisakidae), Helminthologia., 2015, 52, 96-103.

10. N.M. Ishikawa, M.J.T.Ranzani-Paiva, J.V. Lombardi, C.M. Ferreira, Hematological parameters in Nile tilapia, Oreochromis niloticus exposed to sub-lethal concentration of mercury, Braz. Arch. Biol. Technol., 2007, 50, 619-626.

11. A. Rodriguez-Cea, F. Ayllon, E. Garcia-Vazquez, Micronucleus test in freshwater fish species: an evaluation of its sensitivity for application in field surveys, Ecotoxixol. Environ. Saf., 2003, 56, 442-448.

12. M. Pacheco, M.A. Santos, Induction of micronuclei and nuclear abnormalities in the erythrocytes of Anguilla anguilla l exposed either to cyclophophamide or to bleached Kraft pulp mill effluent Fresenius, Environ. Bull., 1996, 5, 746-751.

13. G.M. Alink, E.M.H. Frederix-Walters, M.A. van der Gaag, J.F.J. van der Kerkhoff, C.L.M. Poels, Induction of sister-chromatid exchanges in fish exposed to Rhine water, Mutat. Res., 1980, 78, 369-374.

14. C.K. Grisolia, C.M.T. Cordeiro, Variability in micronucleus induction with different mutagens applied to several species of fish, Genet. Mol. Biol., 2000, 23, 235-239.

15. H.M. Cooley, J.F. Klaverkamp, Accumulation and distribution of dietary uranium in lake whitefish (Coregonus clupeaformis), Aquat. Toxicol., 2000, 48, 375-392.

16. N.S. Loumbourdis, Hepatotoxic and nephrotoxic effects of cadmium in the frog Rana ridibunda, Arch. Toxicol., 2005, 79, 434-440.

17. Fenoglio, E. Boncompagni, M. Fasola, C. Gandini, S. Comizzoli, G. Milanesi, S. Barni, Effects of environmental pollution on the liver parenchymal cells and kupffer-melanomacrophagic cells of the frog Rana esculenta, Ecotoxicol. Environ. Saf., 2005, 60, 259-268.

18. P. Samanta, N. Bandyopadhyay, S. Pal, A.K. Mukherjee, A.R. Ghosh, Histopathological and ultramicroscopical changes in gill, liver and kidney of Anabas testudineus (Bloch) after chronic intoxication of almix (metsulfuron methyl 10.1%+chlorimuron ethyl 10.1%) herbicide, Ecotoxicol. Environ. Saf., 2015, 122, 360-367.

19. W. Jiraungkoorskul, S. Sahaphong, N. Kangwanrangsan, Toxicity of copper in butterfish (Poronotus triacanthus): tissues accumulation and ultrastructural changes, Environ. Toxicol., 2007, 22, 92-100.

20. S. Saenphet, W. Thaworn, K. Saenphet, Histopathological alterations of the gills, liver and kidney in Anabas testudineus (Bloch) fish living in an unused lignite mine, Li District, Lamphun Province, Thailand, Southeast Asian J. Trop. Med. Public Health., 2009, 40, 1121-1126.

21. L. Giari, M. Manera, E. Simoni, B.S. Dezfuli, Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium, Chemosphere., 2007, 67, 1178-1181.

22. [22]S. Pal, E. Kokushi, J. Koyama, S. Uno, A.R. Ghosh, Histopathological alterations in gill, liver and kidney of common carp exposed to chlorpyrifos, J. Environ. Sci. Health, B., 2012, 47, 180-195.

23. A.K. Mishra, B. Mohanty, Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch), Sci. Totol. Environ., 2009, 407, 5031-5038.

24. Y.B. Koca, S. Koca, S. Yildiz, B. GÜrcÜ, E. Osanç, O. Tunçbaş, G Aksoy, Investigation of histopathological and cytogenetic effects on Lepomis gibbosus (Pisces: Perciformes) in the Cine stream (Aydin/Turkey) with determination of water pollution, Environ. Toxicol., 2006, 20, 560-571.

25. O. Kori-Siakpere, J.E.G. Ake, E. Idoge, Haematological characteristics of the African Snakehead, Parachanna Obscura, Afr. J. Biotechnol., 2005, 4, 527-530.

26. J.V. Dacie, S.N. Lewis, Practical Haematology, seventh ed., Churchill Livingstone, Edinburg, 1991.

27. G. Tanyer, Hematology and Laboratory, Ayyildiz Printery Inc. Publications, Ankara, 1985.

28. S.A. Levinson, R.P. Macfat, Clinical laboratory diagnosis, Lea and Febiger, Philadelphia, 1981.

29. B.A. Brown, Haematological principles and procedures, third ed., Lea and Febiger, Philadelphia, 1980.

30. J.B. Mirale, Laboratory Medicine Haematology, sixth ed., The CV mosby Publishing, London, 1982, pp. 883.

31. F. Ayllón, E. Garcia-Vazquez, Micronuclei and other nuclear lesions as genotoxicity indicators in rainbow trout Oncorhynchus mykiss, Ecotoxicol. Environ. Saf., 2001, 49, 221-225.

32. K.R. Carrasco, K.L. Tilbury, M.S. Myers, Assessment of the Piscine micronucleus test as an in situ biological indicator of chemical contaminant effects, Can. J. Fish. Aquat. Sci., 1990,
47, 2123-2136.

33. N. Pantung, K.G. Helander, H.F. Helander, V. Cheevaporn, Histopathological alterations of hybrid walking catfish (Clarias macrocephalus x Clarias gariepinus) in acute and subacute cadmium exposure, Environment. Asia., 2008, 1, 22-27.

34. T.F.A. EL-Khaldi, Effect of different stress factors on some physiological parameters of Nile tilapia (Oreochromis niloticus), Saudi. J. Biol. Sci., 2010, 17, 241-246.

35. D.J. Randall, Gas exchange in fish, in: W.S. Hoar, D.J. Randal (Eds), Fish Physiology, Vol. IV, Academic Press, New York, 1970, pp. 253-287.

36. M.L. Burleson, A.L. Carlton, P.E. Silva, Cardioventilatiory effects of acclimatization to aquatic hypoxia in channel catfish, Resp. Physiol. Neurobi., 2002, 131, 223-232.

37. A.G.M. Chester, P.B. Alessandra, Erythrocytes of the poikilotherms: A phylogenetic odyssey, Arti Grafiche Italo Cernia S.r.l. Naples, Italy, 2006.

38. Omoregie, T.G. Eseyin, P.C. Ofojekwu, Chronic effects of formalin on erythrocyte counts and plasma glucose of Nile tilapia (Oreochromis niloticus), Asian Fish. Sci., 1994, 7, 1-6.

39. A.K. Mohammed, A.B. Sambo, Haematological assessment of the Nile Tilapia Oreochromis niloticus exposed to sublethal concentrations of Portland cement powder in solution, Int. J. Zool. Res., 2008, 4, 48-52.

40. M.I.G. Perez, Effect of chlorpyrifos on the hematology and phagocytic activity of Nile Tilapia cells (Oreochromis niloticus). Toxicol. Mech. Methods., 2006, 16, 495-499.

41. T.D.S. Souza, C.S. Fontanetti, Micronucleus test and observation of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affected by refinery effluent, Mutat. Res., 2006, 605, 87-93.

42. T. Cavas, S.E. Gozukara, Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents. Aqua. Toxicol., 2005, 74, 264-271.

43. C.K. Grisolia, F.L.R.M. Starling, Micronuclei monitoring of fishes from Lake Paranoa, under influence of sewage treatment plant discharges. Mutat. Res., 2001, 491, 39-44.

44. A.M. Coimbra, A. Figueiredo-Fernandes, M.A. Reis-Henriques, Nile tilapia (Oreochromis niloticus), liver morphology, CYP1A activity and thyroid hormones after endosulfan dietary exposure. Pestic. Biochem. Physiol., 2007, 89, 230-236.

45. A.C.K. Benil, G. Koksal, A. Ozkol, Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus) effects on gill, liver and kidney histology. Chemosphere., 2008, 72, 1355-1358.

46. S.K. Srivastava, P.R. Tiwari, A.K. Srivastav, Effects of chlorpyrifos on the kidney of freshwater Catfish, Heteropneustes fossilis. Bull. Environ. Contam. Toxicol., 1990, 45, 748-751.