Effect of Acid Treatment on Stainless Steel Substrate on the Growth of Carbon Nanomaterials Using Alcohol Catalytic Chemical Vapor Deposition

Main Article Content

Thanattha Chobsilp
Visittapong Yordsri
Chaisak Issro
Worawut Muangrat


In this work, the effect of acid treatment on stainless steel (SS) substrate on the morphology and structure of carbon nanomaterials (CNMs) was investigated. CNMs were grown on SS and hydrochloric acid-treated SS (A-SS) substrates by alcohol catalytic chemical vapor deposition (ACCVD) at a growth temperature of 900 °C under atmospheric pressure. Morphology and structure of CNMs on SS and A-SS substrates were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that selective growth of carbon nanotubes (CNTs) with mean diameter of 37.07±8.27 nm, was achieved by using A-SS substrate, while selective growth of carbon nano-onions (CNOs) with mean diameter of 48.70±6.52 nm and some multilayer graphene (MLG), was achieved by using SS substrate. These results demonstrate that acid treatment on the SS substrate is a key parameter to the morphology and structure of CNMs.

Article Details

How to Cite
Chobsilp, T.; Yordsri, V.; Issro, C.; Muangrat, W. Effect of Acid Treatment on Stainless Steel Substrate on the Growth of Carbon Nanomaterials Using Alcohol Catalytic Chemical Vapor Deposition. Microsc. Microanal. Res. 2022, 35, 1-4.
Original Articles


S. Iijima, Helical microtubules of graphitic carbon, Nature, Vol. 354, 56-58 (1991).

S. Iijima, T. Ichihashi, Single-walled carbon nanotubes of 1-nm diameter, Nature, Vol. 363, 603-605 (1993).

T. Han, A. Nag, S.C. Mukhopadhyay, Y. Xu, Carbon nanotubes and its gas-sensing applications: A review, Sens. Actuators A, Vol. 291, 107-143 (2019).

I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: Sensor properties. A Review, Mod. Electron. Mater., Vol. 2, 95-105 (2016).

A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, Vol. 5, 12653-12672 (2017).

F. Giubileo, A.D. Bartolomeo, L. Lemmo, G. Luongo, F. Urban, Field emission from carbon nanostructures, Appl. Sci, Vol. 8, 526 (2018).

C.J. Lee, J. Park, Y. Huh, J.Y. Lee, Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition, Chem. Phys. Lett., Vol. 343, 33-38 (2001).

C.J. Lee, J. Park, J.A. Yu, Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chem. Phys. Lett., Vol. 360, 250-255 (2002).

J. Chuen, Effects of the Growth Time and the Thickness of the Buffer Layer on the Quality of the Carbon Nanotubes, J. Nanomater., Vol. 2017, 1-6 (2017).

Q.N. Pham, L.S. Larkin, C.C. Lisboa, C.B. Saltonstall, L. Qiu, J.D. Schuler, T.J. Rupert, P.M. Norris, Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications, Phys. Status Solidi A, Vol. 214, 1600852 (2017).

S. Neupane, Y. Yang, W. Li, Y. Gao, Synthesis and electron field emission of vertically aligned carbon nanotubes grown on stainless steel substrate, J. Nanosci. Lett., Vol. 4, 14 (2014).

H.A. Moreno, S Hussain, R. Amade, E. Bertran, Growth and functionalization of CNTs on stainless steel electrodes for supercapacitor applications, Mater. Res. Express, Vol. 1, 035050 (2014).

R.L.V. Wal, L.J. Hall, Carbon nanotube synthesis upon stainless steel meshes, Carbon, Vol. 41, 659-672 (2003).

L. Camilli, M. Scarselli, S. Gobbo, P. Castrucci, F. Nanni, E. Gautron, S. Lefrant, M. Crescenzi, The synthesis and characterization of carbon nanotubes grown by chemical vapor deposition using a stainless steel catalyst, Carbon, Vol. 49, 3307-3315 (2011).

Y. Yang, H. Zhang, Y. Yan, Synthesis of CNTs on stainless steel microfibrous composite by CVD: Effect of synthesis condition on carbon nanotube growth and structure, Compos. B: Eng., Vol. 160, 369-383 (2019).

I. Kovalenko, D.G. Bucknall, G. Yushin, Detonation Nanodiamond and Onion-Like-Carbon-Embedded Polyaniline for Supercapacitors, Adv. Funct. Mater., Vol. 20, 3979-3986 (2010).

E. Omurzak, Z. Abdullaeva, C. Iwasmoto, H. Ihara, S. Sulaimankulova, T. Mashimo, Synthesis of hollow carbon nano-onions using the pulsed plasma in liquid, J. Nanosci. Nanotechnol., Vol. 15, 3703-3709 (2015).

Ph. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A, Vol. 13, 2287-2298 (1976).

C. He, N. Zhao, C. Shi, X. Du, J. Li, Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts, Mater. Chem. Phys., Vol. 97, 109-115 (2006).

J. Kang, J. Li, Z. Du, C. Shi, N. Zhao, P. Nash, Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper, Mater. Sci Eng. A, Vol. 475, 136-140 (2008).

C.J. Shearer, A.D. Slattery, A.J. Stapleton, J.G. Shapter, C.T. Gibson, Accurate thickness measurement of graphene, Nanotechnology, Vol. 27, 125704 (2016).

H. Shioyama, The interactions of two chemical species in the interlayer spacing of graphite Synth. Met. Vol. 114, 1-15 (2000).

R. Negishi, C. Wei, Y. Yao, Y. Ogawa, M. Akabori, Y. Kanai, K. Matsumoto, Y. Taniyasu, Y. Kobayashi, Turbostratic stacking effect in multilayer graphene on the electrical transport properties, Phys. Status Solidi B, Vol. 257, 1900437(1-5) (2019).

D. Park, Y.H. Kim, J.K. Lee, Pretreatment of stainless steel substrate surface for the growth of carbon nanotubes by PECVD, J. Mater. Sci., Vol. 38, 4933-4939 (2003).

S. Hofmann, G. Csanyi, A.C. Ferrari, M.C. Payne, J. Robertson, Surface diffusion: The low activation energy path for nanotube growth, Phys. Rev. Lett., Vol. 95, 036101(1-4) (2005).

M.V. Kharlamova, Investigation of growth dynamics of carbon nanotubes, Beilstein J. Nanotechnol., Vol. 8, 826-856 (2017).

M. Hashempour, A. Vicenzo, F. Zhao, M. Bestetti, Direct growth of MWCNTs on 316 stainless steel by chemical vapor deposition: Effect of surface nano-features on CNT growth and structure, Carbon, Vol. 63, 330-347 (2013).

C.J. Lee, J. Park, Growth model for bamboo-like structured carbon nanotubes synthesized using thermal chemical vapor deposition, J. Phys. Chem. B, Vol. 105, 2365-2368 (2001).

M. Kumar, Carbon nanotube synthesis and growth mechanism, Intech, 155-156 (2011).