Beneficial and adverse effects of sorafenib drug on hepatocellular carcinoma-bearing rats: morphological and molecular evidences

Main Article Content

Vichununt Kerdput
Pongsak Khanpetch
Thanakorn Hassana
Kritsakorn Kanjanapongkul
Meng Chieh Yang
Wisuit Pradidarcheep

Abstract

Hepatocellular carcinoma (HCC) is a primary liver cancer commonly found in adults. Globally, HCC is the sixth most prevalent cancer and the fourth most common cause of cancer death. In terms of drug treatment options, sorafenib (Nexavar) is the only Food and Drug Administration approved drug to treat unresectable HCC patients. However, several side effects in said patients were noted after receiving treatment with sorafenib. Therefore, this study aimed to evaluate the inhibitory effect of HCC in sorafenib-treated HCC-bearing rats. The results showed that sorafenib treatment induced high levels of liver enzymes (AST and ALT) in the HCC rat liver. In addition, even though sorafenib-treated rats did not show any side effects during the treatment, inflamed hepatocytes, ballooning degeneration, and microvesicular steatosis were observed in rat liver tissues. Moreover, as revealed by qPCR and immunohistochemical staining, sorafenib enhances higher expression of Bax mRNA and protein in HCC tissues. Thus, this study suggests that sorafenib can inhibit tumor growth through promotion of apoptosis but has the adverse effect of inducing liver injury. Further studies are needed to investigate whether or not HCC cells play a role in how sorafenib exhibits adverse effects on the liver.

Article Details

How to Cite
(1)
Kerdput, V.; Khanpetch, P.; Hassana, T.; Kanjanapongkul, K.; Yang, M. C.; Pradidarcheep, W. Beneficial and Adverse Effects of Sorafenib Drug on Hepatocellular Carcinoma-Bearing Rats: Morphological and Molecular Evidences. Microsc. Microanal. Res. 2022, 35, 10-15.
Section
Original Articles

References

Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018, 68 (6), 394-424.

McGlynn, K. A.; Petrick, J. L.; El-Serag, H. B., Epidemiology of hepatocellular carcinoma. Hepatology 2021, 73 (S1), 4-13.

Jindal, A.; Thadi, A.; Shailubhai, K., Hepatocellular carcinoma: etiology and current and future drugs. Journal of Clinical and Experimental Hepatology 2019, 9 (2), 221-232.

Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C., Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006, 66 (24), 11851-8.

Blanchet, B.; Billemont, B.; Barete, S.; Garrigue, H.; Cabanes, L.; Coriat, R.; Francès, C.; Knebelmann, B.; Goldwasser, F., Toxicity of sorafenib: clinical and molecular aspects. Expert Opinion on Drug Safety 2010, 9 (2), 275-287.

Whittaker, S.; Marais, R.; Zhu, A. X., The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010, 29 (36), 4989-5005.

Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R. A.; Schwartz, B.; Simantov, R.; Kelley, S., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006, 5 (10), 835-44.

Hanahan, D.; Weinberg, R. A., Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646-74.

Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G., Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016, 8 (4), 603-19.

Llambi, F.; Green, D. R., Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev 2011, 21 (1), 12-20.

Campbell, K. J.; Tait, S. W. G., Targeting BCL-2 regulated apoptosis in cancer. Open Biol 2018, 8 (5).

Czabotar, P. E.; Lessene, G.; Strasser, A.; Adams, J. M., Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014, 15 (1), 49-63.

Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol 2007, 35 (4), 495-516.

Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H. G.; Lin, H. K.; Liebermann, D. A.; Hoffman, B.; Reed, J. C., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994, 9 (6), 1799-805.

Fridman, J. S.; Lowe, S. W., Control of apoptosis by p53. Oncogene 2003, 22 (56), 9030-9040.

Miyashita, T.; Harigai, M.; Hanada, M.; Reed, J. C., Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 1994, 54 (12), 3131-5.

Oh, S. J.; Erb, H. H.; Hobisch, A.; Santer, F. R.; Culig, Z., Sorafenib decreases proliferation and induces apoptosis of prostate cancer cells by inhibition of the androgen receptor and Akt signaling pathways. Endocr Relat Cancer 2012, 19 (3), 305-19.

Zhao, X.; Tian, C.; Puszyk, W. M.; Ogunwobi, O. O.; Cao, M.; Wang, T.; Cabrera, R.; Nelson, D. R.; Liu, C., OPA1 downregulation is involved in sorafenib-induced apoptosis in hepatocellular carcinoma. Lab Invest 2013, 93 (1), 8-19.

Garten, A.; Grohmann, T.; Kluckova, K.; Lavery, G. G.; Kiess, W.; Penke, M., Sorafenib-induced apoptosis in hepatocellular carcinoma is reversed by SIRT1. Int J Mol Sci 2019, 20 (16).

Sonntag, R.; Gassler, N.; Bangen, J. M.; Trautwein, C.; Liedtke, C., Pro-apoptotic Sorafenib signaling in murine hepatocytes depends on malignancy and is associated with PUMA expression in vitro and in vivo. Cell Death Dis 2014, 5 (1), e1030.

Tomizawa, M.; Shinozaki, F.; Sugiyama, T.; Yamamoto, S.; Sueishi, M.; Yoshida, T., Sorafenib suppresses the cell cycle and induces the apoptosis of hepatocellular carcinoma cell lines in serum-free media. Exp Ther Med 2010, 1 (5), 863-866.

Abdel-Rahman, O.; Lamarca, A., Development of sorafenib-related side effects in patients diagnosed with advanced hepatocellular carcinoma treated with sorafenib: a systematic-review and metaanalysis of the impact on survival. Expert Review of Gastroenterology & Hepatology 2017, 11 (1), 75-83.

Ganten, T. M.; Stauber, R. E.; Schott, E.; Malfertheiner, P.; Buder, R.; Galle, P. R.; Gohler, T.; Walther, M.; Koschny, R.; Gerken, G., Sorafenib in patients with hepatocellular carcinoma-results of the observational INSIGHT Study. Clin Cancer Res 2017, 23 (19), 5720-5728.

Li, Y.; Gao, Z. H.; Qu, X. J., The adverse effects of sorafenib in patients with advanced cancers. Basic Clin Pharmacol Toxicol 2015, 116 (3), 216-21.

Sorafenib. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, Bethesda, 2012.

Fairfax, B. P.; Pratap, S.; Roberts, I. S. D.; Collier, J.; Kaplan, R.; Meade, A. M.; Ritchie, A. W.; Eisen, T.; Macaulay, V. M.; Protheroe, A., Fatal case of sorafenib-associated idiosyncratic hepatotoxicity in the adjuvant treatment of a patient with renal cell carcinoma. BMC Cancer 2012, 12 (1), 590.

Kerdput, V.; Nilbu-Nga, C.; Kaewnoonual, N.; Itharat, A.; Pongsawat, S.; Pradidarcheep, W., Therapeutic efficacy of a Dioscorea membranacea extract in a rat model of hepatocellular carcinoma: Histopathological aspects. J Tradit Complement Med 2021, 11 (5), 400-408.

Livak, K. J.; Schmittgen, T. D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25 (4), 402-8.

Giannini, E. G.; Testa, R.; Savarino, V., Liver enzyme alteration: a guide for clinicians. CMAJ 2005, 172 (3), 367-379.

Kuroda, D.; Hayashi, H.; Nitta, H.; Imai, K.; Abe, S.; Hashimoto, D.; Chikamoto, A.; Ishiko, T.; Beppu, T.; Baba, H., Successful treatment for sorafenib-induced liver dysfunction: a report of case with liver biopsy. Surg Case Rep 2016, 2 (1), 4.

Barbier, L.; Muscari, F.; Le Guellec, S.; Pariente, A.; Otal, P.; Suc, B., Liver resection after downstaging hepatocellular carcinoma with sorafenib. International Journal of Hepatology 2011, 2011, 791013.

Fukuda, H.; Numata, K.; Moriya, S.; Shimoyama, Y.; Ishii, T.; Nozaki, A.; Kondo, M.; Morimoto, M.; Maeda, S.; Sakamaki, K.; Morita, S.; Tanaka, K., Hepatocellular carcinoma: concomitant sorafenib promotes necrosis after radiofrequency ablation—propensity score matching analysis. Radiology 2014, 272 (2), 598-604.

Garcia, E. J.; Lawson, D.; Cotsonis, G.; Cohen, C., Hepatocellular carcinoma and markers of apoptosis (bcl-2, bax, bcl-x): Prognostic significance. Applied Immunohistochemistry & Molecular Morphology 2002, 10 (3), 210-217.

Guicciardi, M. E.; Gores, G. J., Apoptosis: a mechanism of acute and chronic liver injury. Gut 2005, 54 (7), 1024-1033.

Fabregat, I., Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol 2009, 15 (5), 513-20.

Hussain, S. P.; Schwank, J.; Staib, F.; Wang, X. W.; Harris, C. C., TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 2007, 26 (15), 2166-76.

Zhu, Y.-J.; Zheng, B.; Wang, H.-Y.; Chen, L., New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 2017, 38 (5), 614-622.

Zhao, J.; Liu, X.; Chen, Y.; Zhang, L.-S.; Zhang, Y.-R.; Ji, D.-R.; Liu, S.-M.; Jia, M.-Z.; Zhu, Y.-H.; Qi, Y.-F.; Lu, F.-M.; Yu, Y.-R., STAT3 promotes schistosome-induced liver injury by inflammation, oxidative stress, proliferation, and apoptosis signal pathway. Infect Immun 2021, 89 (3), e00309-20.

Ma, R.; Chen, J.; Liang, Y.; Lin, S.; Zhu, L.; Liang, X.; Cai, X., Sorafenib: A potential therapeutic drug for hepatic fibrosis and its outcomes. Biomedicine & Pharmacotherapy 2017, 88, 459-468.

Wang, Y.; Gao, J. C.; Zhang, D.; Zhang, J.; Ma, J. J.; Jiang, H. Q., New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol 2010, 53 (1), 132-144.

Chalasani, N. P.; Hayashi, P. H.; Bonkovsky, H. L.; Navarro, V. J.; Lee, W. M.; Fontana, R. J.; Practice Parameters Committee of the American College of, G., ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol 2014, 109 (7), 950-66.