A prototype of seminar registration system using face authentication

Main Article Content

Janya Sainui
Nantika Jankaew
Husnanee U-seng

Abstract

The  purposes of the research were 1) to study the performance of three face detection algorithms namely Haar Cascades, Histogram of Oriented Gradients (HOG) and Deep Learning; and four face recognition algorithms including Eigenfaces, Fisherfaces, Local Binary Pattern Histograms (LBPH) and Deep Learning; and 2) to apply the suitable face detection and face recognition algorithms for a face authentication system.


            The research findings showed that Haar Cascades and the LBPH yielded the highest accuracy for face detection and face recognition, respectively. Haar Cascades achieved 100% accuracy to detect faces both on the Yale face dataset and on the 100 random images from the Flickr-Faces-HQ dataset. The LBPH obtained an average accuracy of 98% on the Yale dataset. Because Haar Cascade and LBPH outperformed other analyzed algorithms, they were applied in a seminar registration system. The experimental results showed that 90% of the participants can successfully verify their identity within the first time. However, the participants were able to verify their identity with 100% success within two attempts.

Article Details

How to Cite
Sainui, J., Jankaew , N. ., & U-seng, H. (2021). A prototype of seminar registration system using face authentication. Journal of Applied Information Technology, 7(2), 40–50. retrieved from https://ph02.tci-thaijo.org/index.php/project-journal/article/view/245081
Section
Articles

References

P. Viola and M. Jones. (2001). Rapid object detection using a boosted cascade of simple features. in Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp.511-518.

A. Dehghani, D. Moloney, and X. Xu, (2017). Face detection speed improvement using bitmap-based histogram

of oriented gradient. in 2017 International Conference on Systems, Signals and Image Processing (IWSSIP). pp.1-5.

N. Dalal and B. Triggs. (2005). Histograms of Oriented Gradients for Human Detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). pp. 886-893.

T. Ojala, M. Pietikainen, and T. Maenpaa. (2002). Multiresolution gray-scale and rotation invariant texture classification with localbinary patterns. IEEE Transaction on Pattern Analysis and Machine Intelligence. vol. 24. no. 7. Pp.971-987.

M. Turk and A. Pentland. (1991). Face Recognition Using Eigenfaces. in Proceedings of CVPR IEEE Computer Society. pp. 586-591.

Harihara Santosh Dadi and P G Krishna Mohan. (2015). Performance Evaluation of Eigen faces and Fisher faces with different preprocessed Data sets. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), vol. 4, no. 5, pp. 2110 – 2116.

V. Bellhumeur, J. Hespandaand and D. Kiregeman. (1997). Eigenface vs. fisherface: recognition using class specific linear projection, IEEE Trans. On PAMI, v. 19, pp. 711-720.

Li S.Z. and Lu J. (1999). Face recognition using the nearest feature line method, IEEE Trans. Neural Netw. 10, pp. 439-443.

G. Guo, S.Z. Li and K. Chan. (1998). Face Recognition by Support Vector Machines. Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition.

E. Osuna, R. Freund, and F. Girosi. (1997). Training Support Vector Machines: An Application to Face Detection. Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 130- 136.

F. Schroff, D. Kalenichenko, and J. Philbin. (2015) FaceNet: A unified embedding for face recognition and clustering. in Proc. IEEE Comput. Soc.Conf. Comput. Vis. Pattern Recognition. pp. 815–823.

เกรียงศักดิ์ ตรีประพิณ, ภัคภัทร นาอุดม, และ ไพชยนต์ คงไชย. (2561). การพัฒนาระบบตรวจสอบนักศึกษาเข้าเรียนด้วยวิธีการ

รู้จำใบหน้า. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยอุบลราชธานี, 20(2), 92-105.

สุวัฒน์ บันลือ และ ขนิษฐา อินทะแสง. (2563). ประสิทธิภาพระบบตรวจสอบการเข้าชั้นเรียนด้วยภาพใบหน้าโดยใช้เทคนิค

แอลบีพี. วารสารมหาวิทยาลัยราชภัฎร้อยเอ็ด, 14(1), 147-158.

อะดาว น้องวี, บุญชัย แซ่สิ้ว, และ ศุภรัชชัย วรรัตน์ (2564) การประยุกต์ใช้เทคโนโลยีการรู้จำใบหน้า เพื่อบันทึกเวลาเข้าออกของพนักงาน. วารสารวิชาการการจัดการเทคโนโลยี มหาวิทยาลัยราชภัฏมหาสารคาม. 8(1), 99-113.