Development of Prototype of Automatic Wheelchair Controlled by Brain-Computer Interface System
Main Article Content
Abstract
This research was designed and development of prototype of automatic wheelchair controlled by brain computer interface system. The purpose of this research was to study the measuring brain wave using Neurosky Mindset which using dry sensor measure between the front lobe (FP1) and the ear lobe. The EEG signal feature are extracted by adopting Discrete Wavelet Transform (DWT) that using LabVIEW programming. The resolution of EEG signals was decomposition mind wave into five frequency band (gamma, beta, alpha, theta and delta) using “DB8” wavelet function. The calculation of wavelet coefficient energy and RMS amplitude of EEG signals are used by LabVIEW. The controlled prototype electric wheelchair used by eye blink of eye blink of human control.
The results of the study found that control of prototype electric wheelchair can be controlled by EEG signals in direction of forward backward turn lift turn right and stop. In addition, it can be applied to the control of electric wheelchairs, alarm system, and electrical equipment. As well as, the elderly or patients cannot use the muscles to operate those devices.
Article Details
References
[2] ธเนศ อังศุวัฒนากุล, เครือฟ้า ความหมั่น, จิราพร ทัพซ้าย และนุชนารถ สุวรรณขำ. (2555). เครื่องวัดคลื่นไฟฟ้าสมองชนิดอัลฟา. ใน การประชุมวิชาการวิศวกรรมชีวการแพทย์ไทย ครั้งที่ 4 (น.119-122), ปทุมธานี: มหาวิทยาลัยรังสิต.
[4] Vourvopoulos, A. & Liarokapis, F. (2014). Evaluation of commercial brain–computer interfaces in real and virtual world environment: A pilot study. Computers & Electrical Engineering, 40(2), 714-729.
[5] Yoshida, K. Hirai, F. & Miyaji, I. (2014). Learning System Using Simple Electroencephalograph Feedback Effect During Memory Work. Procedia Computer Science, 35, 1596-1604.
[6] Kathirvelan, J. Anilkumar, R. Alex, Z.C. & Fazul, A. (2012). Development of low cost automatic wheelchair controlled by oral commands using standalone controlling system. In 2012 IEEE International Conference on Computational Intelligence and Computing Research (pp.1 – 4). Coimbatore : IEEE. DOI : 10.1109/ICCCIC.2012.6510292.
[7] Sinha, U. & Kanthi, M. (2016). Mind Controlled Wheelchair. International Journal of Control Theory and Applications, 9(39), 19-28. DOI : 10.9790/1676-1203030913.
[8] Girase, P.G. & Deshmukh, M.P. (2016). Mindwave Device Wheelchair Control. International Journal of Science and Research (IJSR), 5(6), 2172-2176.