The Comparison of Shunt Active Power Filter Structure for the Harmonic Elimination in AC-Electric Railway Systems

Main Article Content

ฐานันดร์ ตรงใจ


This paper presents the performance comparison of harmonic elimination in electric railway systems with two shunt active power filter (SAPF) structures: split capacitor structure and joint capacitor structure. The indicators of the comparison for the two SAPF structures are the total current harmonic distortion (%THDI), the ripple of DC bus voltage (% gif.latex?\fn_phv&space;\triangleVDC(ripple)) and the dynamic response of DC bus voltage during load changes. The harmonic detection, synchronous reference frame (SRF method) is used for calculating the reference current of both SAPF structures. The conventional PI controllers are used to control the compensating current and regulate the DC bus voltage of SAPF. The hardware in the loop (HIL) simulation technique which process by Simulink/MATLAB program and TMS320C2000TM Experimenter Kit board is applied to simulate harmonic elimination in AC-electric railway systems. The simulation results show that both SAPF structures can provide good performance for harmonic elimination and the %THDI of source current after compensation are satisfied under the IEEE std 519-2014. Furthermore, the SAPF with joint capacitor structure gives less ripple of DC bus voltage than the split capacitor structure. However, the split capacitor structure has better dynamic response than the joint capacitor structure when loads in the system have been changed and greatly increased.

Article Details

How to Cite
ตรงใจ ฐ., “The Comparison of Shunt Active Power Filter Structure for the Harmonic Elimination in AC-Electric Railway Systems”, sej, vol. 13, no. 2, pp. 38–51, Aug. 2018.
Research Articles


[1] นคร จันทศร. “ช่างรถไฟ: ความรู้ทั่วไปด้านวิศวกรรมรถไฟ”. พิมพ์ครั้งที่ 3. กรุงเทพฯ: สำนักนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีระบบขนส่งทางรางแห่งชาติ. หน้า 229-243, (2559).

[2] ฐานันดร์ ตรงใจ, กองพล อารีรักษ์ และ ทศพร ณรงฤทธิ์, “การเปรียบเทียบวิธีทฤษฎีกำลังรีแอกทีฟขณะหนึ่งและวิธีกรอบอ้างอิงซิงโครนัสสำหรับการตรวจจับฮาร์มอนิกในระบบรางไฟฟ้ากระแสสลับหนึ่งเฟส,” การประชุมวิชาการทางวิศกรรมไฟฟ้า eecon ครั้งที่ 40, พัทยา, โรงแรม เดอะ ซายน์, 16 พ.ย. 2560, หน้า 218-221

[3] Sy-Ruen Huang and Bing-Nan Chen, “Harmonic study of the Le Blanc transformer for Taiwan railway's electrification system,” in IEEE Transactions on Power Delivery, vol. 17, no. 2, pp. 495-499, April 2002.

[4] A. Luo, C. Wu, J. Shen, Z. Shuai and F. Ma, “Railway Static Power Conditioners for High-speed Train Traction Power Supply Systems Using Three-phase V/V Transformers,” in IEEE Transactions on Power Electronics, vol. 26, no. 10, pp. 2844-2856, Oct. 2011.

[5] Z. Shu, S. Xie and Q. Li, “Single-Phase Back-To-Back Converter for Active Power Balancing, Reactive Power Compensation, and Harmonic Filtering in Traction Power System,” in IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 334-343, Feb. 2011.

[6] M. Cirrincione, M. Pucci, G. Vitale and A. Miraoui, “Current Harmonic Compensation by a Single-Phase Shunt Active Power Filter Controlled by Adaptive Neural Filtering,”
in IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3128-3143, Aug. 2009.

[7] Pee-Chin Tan, Poh Chiang Loh and D. G. Holmes, “A robust multilevel hybrid compensation system for 25-kV electrified railway applications,” in IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 1043-1052, July 2004.

[8] M. El-Habrouk and M. K. Darwish, “Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using DSPs,” in IEE Proceedings - Electric Power Applications, vol. 148, no. 1, pp. 21-28, Jan. 2001.

[9] B. A. Angélico, L. B. G. Campanhol and S. A. Oliveira da Silva, “P-I/P-I-D tuning procedure of a single-phase shunt active power filter using Bode diagram,” IET Power Electron, vol. 7, pp. 2647–2659, Oct 2014.

[10] H. Hu, Z. He and S. Gao, “Passive Filter Design for China High-Speed Railway With Considering Harmonic Resonance and Characteristic Harmonics,” in IEEE Transactions on Power Delivery, vol. 30, no. 1, pp. 505-514, Feb. 2015.

[11] T. Narongrit, K-L. Areerak and K-N. Areerak “A New Design Approach of Fuzzy Controller for Shunt Active Power Filter,” Electric Power Components and Systems, vol. 43, pp. 685–694, Mar 2015.