พฤติกรรมโครงสร้างจุลภาคและสมบัติทางกลของการเชื่อมเสียดทานกวนแบบจุดของแผ่นอลูมิเนียมหล่อกึ่งของแข็งต่างชนิด SSM2024 และ SSM6061
Main Article Content
บทคัดย่อ
เทคนิคการเชื่อมเสียดทานแบบจุดในครั้งนี้ได้ออกแบบมาเพื่อประสานแผ่นอลูมิเนียมหล่อกึ่งของแข็งต่างชนิดกันระหว่าง 2024 และ 6061 โดยมีปัจจัยการเชื่อม คือ ความเร็วหมุนเชื่อม 3 ระดับ 500 1,000 และ 1,400 รอบต่อนาที ความเร็วกด 3 ระดับ 56 112 และ 224 มิลลิเมตรต่อนาที ความลึกของบ่ากวนที่กดลงในเนื้อวัสดุทดลองคือ 0.5 มิลลิเมตร และระยะเวลาหมุนแช่ในเนื้อวัสดุ 10 วินาที เครื่องมือเชื่อมทรงกระบอกหมุนตามเข็มนาฬิกา ผลการทดลองพบว่าโครงสร้างจุลภาคบริเวณพินกวน (Stir Pin Zone; SpZ) ด้านล่างของหัวพินเกิดการประสานกันของวัสดุสองชนิดเป็นรูปแบบลาแมลลาร์ (lamellar) ที่เกิดจากการแผ่ความร้อนโดยการเสียดทานของเครื่องมือเชื่อม ค่าแรงเฉือนเฉลี่ยสูงสุดของชิ้นงานทดสอบมีค่าเท่ากับ 3.77 กิโลนิวตัน ที่ความเร็วหมุนเชื่อม 500 รอบต่อนาที ความเร็วกด 56 มิลลิเมตรต่อนาที และค่าแรงเฉือนเฉลี่ยต่ำสุดของชิ้นทดสอบมีค่าเท่ากับ 1.51 กิโลนิวตัน ที่ความเร็วหมุนเชื่อม 1,400 รอบต่อนาที ความเร็วกด 224 มิลลิเมตรต่อนาที
Article Details
ลิขสิทธิ์เป็นของวารสารวิศวกรรมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ
เอกสารอ้างอิง
[2] M. Merzoug, M. Mazari, Berrahall and A. Imad, “Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys,” Mater Design., vol. 31(6), pp. 3023-3028, 2010.
[3] H. Badarinarayan, “Fundamentals of friction stir spot welding,” Doctoral Dissertations, Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 2009.
[4] Y. Bozkurt, S. Salman and G. Çam, “Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded AA 5754-H22/2024-T3 joints,” Sci Technol Weld Joi., vol. 18(4), pp. 337-345, 2013.
[5] G. Ipekoglu and G. Çam, “Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys,” Metall and Mat Trans A., vol. 45(7), pp. 3074-3087, 2014.
[6] G. Çam, G. Ipekoglu and H. Tarik Serindag, “Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints,” Sci Technol Weld Joi., vol. 19(8), pp. 715-720, 2014.
[7] A. Heidarzadeh, H. Khodaverdizadeh, A. Mahmoudi and E. Nazari, “Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints,” Mater Design., vol. 37, pp. 166-173, 2012.
[8] S. T. Amancio-Filho, S. Sheikhi J. F. Dos Santos and C. Bolfarini, “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4,” J Mater Process Tech., vol. 206(1-3), pp. 132-142, 2008.
[9] S. Babu, G. D. Janaki Ram, P. V. Venkitakrishnan, G. Madhusudhan Reddy and K. Prasad Rao., “Microstructure and Mechanical Properties of Friction Stir Lap Welded Aluminum Alloy AA2014,” J Mater Sci Technol., vol. 28(5), pp. 414-426, 2011.
[10] M. P. Mubiayi and E. T. Akinlabi, “Evolving properties of friction stir spot welds between AA1060 and commercially pure copper C11000,” T Nonferr Metal Soc., vol. 26(7), pp. 1852-1862, 2016.
[11] R. Z. Xu, D. R. Ni, Q. Yang, C. Z. Liu and Z. Y. Ma, “Influencing mechanism of Zn interlayer addition on hook defects of friction stir spot welded Mg–Al–Zn alloy joints,” Mater Design., vol. 69, pp. 163-169, 2015.
[12] Y. Li, L. E. Murr and J. C. McClure, “Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum,” Mat Sci Eng A-Struct., vol. 271(1-2), pp. 213-223, 1999.
[13] S. T. Amancio-Filho, S. Sheikhi, J. F. dos Santos and C. Bolfarini, “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4,” J Mater Process Tech., vol. 206(1-3), pp. 132-142, 2008.
[14] P. Sadeesh, M. Venkatesh Kannan, V. Rajkumar, P. Avinash, N. Arivazhagan, K. Devendranath Ramkumar and S. Narayanan, “Studies on friction stir welding of AA 2024 and AA 6061 dissimilar metals,” Procedia Eng., vol. 75, pp. 145-149, 2014.
[15] C. Jonckheere, B. D. Meester, A. Denquin and A. Simar, “Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061-T6 and 2014-T6 aluminum alloys,” J Mater Process Tech., vol. 213(6), pp. 826-837, 2013.
[16] รอมฎอน บูระพา รังสินี แคนยุกต์ และเจษฎา วรรณสินธุ์. “การพัฒนากระบวนการผลิตโลหะกึ่งของแข็งโดยการพ่นฟองแก๊สขณะแข็งตัวสำหรับอะลูมิเนียมผสมเกรด A356”. การประชุมวิชาการทางวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ครั้งที่ 7 ประจำปี 2552. 21-22 พฤษภาคม 2552. สงขลา : 549-554, 2552.
[17] C. Gao, R. Gao and Y. Ma, “Microstructure and mechanical properties of friction spot welding aluminium-lithium 2A97 alloy,” Mater Design., vol. 83, pp. 719-727, 2015.
[18] S. Thanabumrungkul, S. Janudom, R. Burapa, P. Dulyapraphant and J. Wannasin, “Industrial development of gas induced semi-solid process,” T Nonferr Metal Soc., vol. 20(3), pp. s1016-s1021, 2010.
[19] N. Pajaroen, T. Plookphol, J. Wannasin and S. Wisutmethangoon, “Influence of Solution Heat Treatment Temperature and Time on the Microstructure and Mechanical Properties of Gas Induced Semi-Solid (GISS) 6061 Aluminum Alloy,” App Mech Mater., vol. 313-314, pp. 67-71, 2013.
[20] E. Fereiduni, M. Movahedi and A. H. Kokabi, “Aluminum/steel joints made by an alternative friction stir spot welding process,” J Mater Process Tech., vol. 224, pp. 1-10, 2015.
[21] L. E. Murr, Y. Li, and J. C. McClure, “A Comparative Study of Friction Stir Welding of Aluminium Alloys,” Aluminium Trans., vol. 1, pp. 141-154, 1999.
[22] O. Hatamleh and A. DeWald, “An investigation of the peening effects on the residualstresses in friction stir welded 2195 and 7075 aluminum alloy joints,” J Mater Process Tech., vol. 209, pp. 4822-4829, 2009.
[23] P. Cavaliere, E. Cerri and A. Squillace, “Mechanical response of 2024-7075 aluminium alloys joined by Friction Stir Welding,” J Mater Sci., vol. 40, pp. 3669-3676, 2005.
[24] P. Cavaliere, A. De Santis, F. Panella and A. Squillace., “Effect of welding parameter onmechanical and microstructural properties ofdissimiar AA 6082 - AA 2024 joints producedby friction stir welding,” Mater Design., vol. 30, pp. 609-616, 2009.
[25] M. Shiraly, M. Shamanian, M. R. Toroghinejad and M. Ahmadi Jazani., “Effect of Tool Rotation Rate on Microstructure and Mechanical Behavior of Friction Stir Spot-Welded Al/Cu Composite,” J Mater Eng Perform., vol. 23(2), pp. 413-420, 2014.
[26] R. Heideman, J. C. ohnson and S. Kou, “Metallurgical analysis of Al/Cu friction stir spot welding,” Sci Technol Weld Joi., vol. 15(7), pp. 597-604, 2010.