Energy System Management for Substation of Electricity Generating Authority of Thailand base on Artificial Neural Network การจัดการพลังงานสำหรับสถานีไฟฟ้าย่อยของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย บนพื้นฐานของโครงข่ายประสาทเทียม

Main Article Content

SIRAPHONG LUECHAI

Abstract

The Irregular and unstable Electrical Power Problems solving of Power Station with Artificial Neural Network Technique aims make the voltage value to stable and to create the mathematics model. From the comparison result found that the obtainable electrical value of the artificial neural network method with the initial electrical value. The standard deviation has decreased from 2.4503 to 0.7559 , representing 69.15% and the variance has decreased from 6.0041 to 0.5714 , representing 90.48%. Therefore, the artificial neural network method has increased voltage stability.

Article Details

How to Cite
[1]
S. LUECHAI, “Energy System Management for Substation of Electricity Generating Authority of Thailand base on Artificial Neural Network: การจัดการพลังงานสำหรับสถานีไฟฟ้าย่อยของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย บนพื้นฐานของโครงข่ายประสาทเทียม”, sej, vol. 15, no. 2, pp. 98–105, Jul. 2020.
Section
Research Articles

References

Mercier, Cherkaoui, & Oudalov, “Optimizing a battery energy storage system for frequency control application in an isolated power system.”, IEEE transactions on Power Systems, 24 (3), pp. 1469-1477, 2009

Handbook for Power System Control Center, Electricity Generating Authority of Thailand in Northern Region, 2017, pp. 71

M. Malekabadi, M. Haghparast and F. Nasiri, “Air Condition’s PID Controller Fine-Tuning Using Artificial Neural Networks and Genetic Algorithms”, Molecular Diversity Preservation International (MDPI), 2018

D. Sui and Z. Jiao, “Application of Neural Network in Optimization of PID Controller”, Metallurgical and Mining Industry (MMI), No. 7, 2015

R. Rattanawaorahirunkul, J. Seekuka, S. Supannarach and P. Kutchomsri, “Optimal PID Controller design for Automatic Voltage Regulator Systems”, Journal of Information Science and Technology 4 (1), pp. 21-26, 2013

D. Jetpipattanapong and R. Tanapattanadol, “A Comparative Impact Study of the Changing Number of Outputs in Artificial Neuron Network on Yom River Tide Forecasting, Phrae Province”, Journal of Environmental Management, Volume 6, No. 2 , Jul-Dec 2010

A. Zribi, M. Chtourou, M. Djemel, “A New PID Neural Network Controller Design for Nonlinear Processes”, Journal of Circuits, Systems and Computers, Vol. 27, No. 04, 2018

M. Hemmatinezhad, A. G. Zahedi. S. Shafiee, “Prediction the success of Nation in Asian Games using neural network”, Sport SPA Vol. 8, Issue 1, pp. 33-42, 2011

G. W. Irwin, K. Warwick and K. J. Hunt (1995)., “Neural Network Applications in Control”, European Journal of Engineering Education, 21(2), p. 216, 2010

L. Wuttisittikulkij, “MATLAB Books for Electrical Engineering Applications”, Chulalongkorn University Press, 2010.

S. Srikasem, M. Songchaikul, S. Srisuphaprida, “MATLAB book for solving engineering problems”, Rangsit University Press, 2nd edition, 1999.

S. Supharat, Handbook of Water Forecasting by Artificial Neural Networks, Irrigation Development Institute, 2001.

N. Somchaiwong, Control System Book 2, Khrongchang Publisher, 2009.

N. Umdee, Thesis, Optimization of activity based costing based on artificial neural network, Naresuan University, 2015.