Computational Soliton Modulated Nonlinear Microring Add-drop Multiplexer and Potential Applications


  • M. Bunruangses Department of Computer Engineering, Faculty of Industrial Education, Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
  • Mahdi Bahadoran Department of Physics, Shiraz University of Technology, 31371555, Shiraz, Fars, Iran
  • Nhat Truong Pham Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • P. Youplao Department of Electrical Engineering, Faculty of Industry and Technology, Rajamangala University of Technology Isan Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
  • K. Ray Amity School of Applied Sciences, Amity University Rajasthan, Jaipur, India
  • P. Yupapin Electrical Power Division, Sakon Nakhon Technical College, School of Industrial Technology, Institute of Vocational Education Northeastern 2, Sakon Nakhon 47000, Thailand



Nonlinear device, Soliton communication, Soliton modulation, Add-drop multiplexer, Free-space communication


 This paper proposed the design of the multiplexer node for the free-space transmission link. Various soliton modulated signal categories are numerically studied. The proposed system is a modified micro-optical add-drop multiplexer. The cross phase modulated signals induced into the main ring by the two side rings can give more signal complexity, which can lead to having the securely transmitted signal requirement. The high optical power obtained from the soliton aspect can give long-distance communication, where the required frequency band can be improved and suitable for the required applications. For an instant, the use for the side road connection of the vehicle-to-everything (V2X) can be implemented in either cable or wireless(free-space) connection. The results obtained have shown promising applications such as free-space transmission link in both above and underground nodes, quantum cryptography, and communication security based on nonlinear aspects. Moreover, the electro-optic conversion can also be used by the stacked layers of silicon-graphene-gold, in which the signal conversion can be applied suitably.


H. Haas, "LiFi is a paradigm-shifting 5G technology," Reviews in Physics, Vol. 3, pp. 26-31, 2018.

F. Boccardi, R.W. Heath, A. Lozano, T.L. Marzetta, P. Popovski, Five disruptive technology directions for 5G, IEEE Commun. Mag., Vol. 52, No. 2, pp.74-80, 2014.

D. Tsonev, S. Videv, H. Haas, "Towards a 100 Gb/s visible light wireless access network," Opt. Express, Vol. 23, No. 2, pp. 1627-1637, 2015.

W. Ni, R.P. Liu, B. Collings, X. Wang, "Indoor cooperative small cells over ethernet," IEEE Commun. Mag., Vol. 51, No. 9, pp.100-107, 2013.

Z. Wang, D. Tsonev, S. Videv, H. Haas, "On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting," IEEE J. Sel. Areas Commun., Vol. 33, No. 8, pp.1612-1623, 2015.

J. Mitola III and G. Maguire Jr, “Cognitive radio: making software radios more personal,” IEEE Personal Communications, Vol. 6, No. 4, pp. 13-18, 1999.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1 -Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation,” IEEE Photonics Journal, Vol. 4, pp. 1465-1473, Oct. 2012.

H. Haas, L. Yin, Y. Wang, and C. Chen, “what is LiFi?” Journal of Light wave Technology, Vol. 34, No. 6, 15 Mar. 2016.

L. Wu, Z. Zhang, J. Dang, and H. Liu, “Adaptive Modulation Schemes for Visible Light Communications, “Journal of Lightwave Technology, Vol. 33, No. 1, pp. 117-125, Jan 2015.

J. K. Kim and E. F. Schubert, "Transcending the replacement paradigm of solid-state lighting," Opt. Exp., Vol. 16, No. 26, pp. 21 835¬ - 21 837, Dec. 2008.

J. Park, "Speedup of dynamic response of organic light-emitting diodes," Journal of Light wave Technology, vol. 28, no. 19, pp. 2873¬ - 2880, Oct. 2010.

C. Quintana, V. Guerra, J. Rufo, J. Rabadan, and R. Perez-Jimenez, "Reading lamp-based visible light communication system for in¬ flight entertainment," IEEE Trans. Consum. Electron., Vol. 59, No. 1, pp. 31- 37, Feb. 2012.

S. Rajagopal, R. Roberts and S.K. Lim, "IEEE 802.15.7 visible light communication: modulation schemes and dimming support", IEEE Communications Magazine, Vol. 50, No. 3, pp. 72 - 82, March 2012.

S. Rajbhandari, H. Chun, G. Faulkner, K. Cameron, A. V. N. Jalajakumari, R. Henderson, D. Tsonev, M. Ijaz, Z. Chen, H. Haas, E. Xie, J. J. D. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson and D. O’Brien, "High-speed integrated visible light communication system: Device constraints and design considerations", IEEE J. Sel. Areas Commun., Vol. 33, No. 9, pp. 1750-1757, 2015.

W. Huang, C. Gong, and Z. Xu, "System and waveform design for wavelet packet division multiplexing based visible light communications," Journal of Lightwave Technology, Vol. 33, No. 14, pp. 3041- 3051, Jul. 2015.

A. Farid and S. Hranilovic, “Capacity bounds for wireless optical intensity channels with Gaussian noise,” IEEE Trans. Inf. Theory, Vol. 56, No. 12, pp. 6066-6077, Dec. 2010.

A. Gomez, Kai Shi, C. Quintana, M. Sato Faulkner, B. C. Thomsen, D. O’ Brien “Beyond 100-Gb/s Indoor Wide Field-of-View Optical Wireless Communications,” IEEE Photonics Technology Letters, Vol. 27, No. 4, pp. 367-370, Feb. 2015.

Z. MacHardy, A. Khan, K. Obana, S. Iwashina, ""V2X Access Technologies: Regulation, Research, and Remaining Challenges" IEEE Communications Surveys & Tutorials, Vol. 20, No. 3, 2018.

K. Katsaros, M. Dianati, R. Tafazolli, X. Guo, "End-to-end delay bound analysis for location-based routing in hybrid vehicular networks", IEEE Trans. Veh. Technol., Vol. 65, No. 9, pp. 7462-7475, Sep. 2016.

G. Araniti, C. Campolo, M. Condoluci, A. Iera, A. Molinaro, "LTE for vehicular networking: A survey", IEEE Commun. Mag., Vol. 51, No. 5, pp. 148-157, May 2013.

M. L. Sichitiu, M. Kihl, "Inter-vehicle communication systems: A survey", IEEE Commun. Surveys Tuts., Vol. 10, No. 2, pp. 88-105, 2008.

M. Alsabaan, W. Alasmary, A. Albasir, K. Naik, "Vehicular networks for a greener environment: A survey", IEEE Commun. Surveys Tuts., Vol. 15, No. 3, pp. 1372-1388, 2013.

K. Zheng, Q. Zheng, P. Chatzimisios, W. Xiang, Y. Zhou, "Heterogeneous vehicular networking: A survey on architecture challenges and solutions", IEEE Commun. Surveys Tuts., Vol. 17, No. 4, pp. 2377-2396, 2015.

J. Petit, F. Schaub, M. Feiri, F. Kargl, "Pseudonym schemes in vehicular networks: A survey", IEEE Commun. Surveys Tuts., Vol. 17, No. 1, pp. 228-255, 2015.

F. Qu, Z. Wu, F.-Y. Wang, W. Cho, "A security and privacy review of VANETs", IEEE Trans. Intell. Transp. Syst., Vol. 16, No. 6, pp. 2985-2996, Dec. 2015.

M. Hadded, P. Muhlethaler, A. Laouiti, R. Zagrouba, L. A. Saidane, "TDMA-based MAC protocols for vehicular ad hoc networks: A survey qualitative analysis and open research issues", IEEE Commun. Surveys Tuts., Vol. 17, No. 4, pp. 2461-2492, 2015.

S. Chen, J. Hu, Y. Shi, and L. Zhao, "LTE-V: A TD-LTE-Based V2X Solution for Future Vehicular Network," IEEE Internet Of Things Journal, Vol. 3, No. 6, pp. 997-1005, Dec. 2016.

G. P. Fettweis, "The tactile Internet: Applications and challenges", IEEE Veh. Technol. Mag., Vol. 9, No. 1, pp. 64-70, Mar. 2014.

M. Vicente-Lozano, G. Franceschetti, F. J. Ares-Pena, E. Moreno-Piquero, "Analysis and synthesis of a printed array for satellite communication with moving vehicles", IEEE Trans. Antennas Propag., Vol. 50, No. 11, pp. 1555-1559, Nov. 2002.

K. A. Hafeez, A. Anpalagan, L. Zhao, "Optimizing the control channel interval of the DSRC for vehicular safety applications", IEEE Trans. Veh. Technol., Vol. 65, No. 5, pp. 3377-3388, May 2016.

M. Raya, P. Papadimitratos, I. Aad, D. Jungels, J.-P. Hubaux, "Eviction of misbehaving and faulty nodes in vehicular networks", IEEE J. SeL Areas Commun., Vol. 25, No. 8, pp. 1557-1568, Oct. 2007.

H. Seo, K.-D. Lee, S. Yasukawa, Y. Peng, P. Sartori, "LTE evolution for vehicle-to-everything services", IEEE Commun. Mag., Vol. 54, No. 6, pp. 22-28, Jun. 2016.

J.E. Heebner, R.W. Boyd and Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” JOSA B, 19(4), 722-731,2002.

M. Bahadoran, J. Ali and P.P.Yupapin, “Graphical approach for nonlinear optical switching by PANDA vernier filter,” IEEE Photonics Technology Letters, 25(15), 1470-1473, 2013.

M. Bahadoran, M.S. Aziz, A. Noorden, M.A. Jalil, J. Ali and P.P. Yupapin, “Novel approach to determine the Young's modu lus in silicon-on-insulator waveguide using microring resonator,” Digest Journal of Nanomaterials and Biostructures, 9(3), 1095-1104, 2014.

S. Mikroulis, H. Simos, E. Roditi and D. Syvridis, "Ultrafast all-optical AND logic operation based on four-wave mixing in a passive InGaAsP-InP microring resonator, " IEEE Photonics Technology Letters, 2005; 17(9): 1878-1880.

B. Liu, A. Shakouri and J.E. Bowers, "Wide tunable double ring resonator coupled lasers," IEEE Photonics Technology Letters, 2002; 14(5): 600-602.

C. Koos, L. Jacome, C. Poulton, J. Leuthold and W. Freude, "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Optics Express,2007; 15(10): 5976-5990.




How to Cite

M. Bunruangses, Mahdi Bahadoran, Nhat Truong Pham, P. Youplao, K. Ray, & P. Yupapin. (2022). Computational Soliton Modulated Nonlinear Microring Add-drop Multiplexer and Potential Applications. Journal of Industrial Technology and Innovation, 1(1), 246558.