Proposal of Relativistic Electronic Circuit using Microstrip Add-drop Multiplexer

Authors

  • S. Sonasang Electronic Technology, Faculty of Industrial Technology, Nakon Phanom University, Nakon Phanom 48000, Thailand
  • P. Prabpal Electrical Power Division, Sakon Nakhon Technical College, School of Industrial Technology, Institute of Vocational Education Northeastern 2, Sakon Nakhon 47000, Thailand
  • P. Hakaew Electrical Power Division, Sakon Nakhon Technical College, School of Industrial Technology, Institute of Vocational Education Northeastern 2, Sakon Nakhon 47000, Thailand
  • P. Sirikan Electrical Power Division, Sakon Nakhon Technical College, School of Industrial Technology, Institute of Vocational Education Northeastern 2, Sakon Nakhon 47000, Thailand
  • S. Boonkirdram Program of Electrical and Electronics, Faculty of Industrial Technology, Sakon Nakhon Rajabhat University, 680 Nittayo, Mueang, Sakon Nakhon 47000, Thailand
  • Nhat Truong Pham Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • P. Youplao Department of Electrical Engineering, Faculty of Industry and Technology, Rajamangala University of Technology Isan Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
  • P. Yupapin Institute of Vocational Education Northeastern Region 2

DOI:

https://doi.org/10.55674/snrujiti.v1i1.246559

Keywords:

Relativistic electronics, Microstrip, Rabi oscillation, Warp speed, Two-level system

Abstract

This paper presents a brief detail of the relativistic circle that can be applied for various applications. Relativistic electronics is the challenged device that has the capacity of the new era of technology called civilian technology. Non-relativistic electronics have the limitation that the speed of operation cannot serve the demand of the required applications. The technique to achieve electron transmission faster than light has not been realistic yet. This work has proved that electron speed faster than the speed of light can be realized using the relativistic circle. The functions of the operations are the Rabi oscillation and the successive

filtering. The AC source is input into the microstrip add-drop multiplexer. The wave-particle of the signal oscillation within the microstrip can be obtained. The higher filtering frequency gives the higher electron warp speed. In applications, broadband plasma frequencies can be generated for various applications.

References

Prabpal, P., Youplao, P., Ray, K., Boonkirdram, S. and Yupapin, P. (2022). Optical black hole characteristics using microring space‐time distortion circuit. Microwave and Optical Technology Letters. Early Online: 2022, DOI: 10.1002/mop.33282.

P. Yupapin. Optical Rabi antenna. Optica Webinar 2022, https://www.optica.org/ enus/meetings/webinar/2022/02 february/ optical rabi antenna/, 2022.

Panov, E. I. (2018). Direct current regimes in the linear electric circuits according to the relativistic circuit theory. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 2(1), 17-29.

Panov, E. I. (2018). Alternating current regimes in linear electric circuits according to the relativistic circuit theory. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 2(2), 20-39.

Sonasang, S., Prabpal, P., Sirikan, P., Hakaew, P., Pham, N. T., Yupapin, P., ... and Boonkirdram, S. (2022). Rabi antenna using microstrip add-drop multiplexer for electron warp speed investigation. Chinese Optics Letters, 20(7), 073901.

Garhwal, A., Arumona, A.E., Youplao, P., Ray, K. and Amiri, I.S. and Yupapin, P. (2021). Human-like Stereo Sensors using Plasmonic Antenna Embedded MZI with Space-time Modulation Control. Chinese Optics Letters 19, 101301.

Suwandee, S., Arumona, A. E., Ray, K., Youplao, P. and Yupapin, P. (2020). Mindfulness model using polariton oscillation in plasmonic circuit for human performance management. Axioms, 9(3), 76.

Assimakopoulos, V. (1995). A successive filtering technique for identifying long‐term trends. Journal of Forecasting, 14(1), 35-43.

Phatharacorn, P., Chiangga, S. and P. Yupapin, P. (2016). Analytical and Simulation Results of a Triple Micro Whispering Gallery Mode Probe System for a 3D Blood Flow Rate Sensor. Applied Optics 55, 9504-9513.

Garhwal, A., Arumona, A.E., Ray, K., Youplao, P., Suwandee, S. and Yupapin, P. (2020). Microplasma Source Circuit using Microring Space-time Distortion Control, IEEE Transactions on Plasma Science 48, 3600-3605.

Mookherjea, S. and Schneider, M. A. (2008). The nonlinear microring add-drop filter. Optics Express, 16(19), 15130-15136.

Tavousi, A., Mansouri-Birjandi, M. A., Ghadrdan, M. and Ranjbar-Torkamani, M. (2017). Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photonic Network Communications, 34(1), 131-139.

Youplao, P., Sarapat, N., Porsuwancharoen, N., Chaiwong, K., Jalil, M. A., Amiri, I. S., ... and Grattan, K. T. V. (2018). Plasmonic op-amp circuit model using the inline successive microring pumping technique. Microsystem Technologies, 24(9), 2018, 3689-3695.

Arumona, A.E., Amiri, I.S. and Yupapin, P. (2020). Plasmonic Micro Antenna Characteristics using Gold Grating Embedded in a Panda-ring Circuit. Plasmonics 15, 279–285.

Garhwal, A., Ray, K., Arumona, A.E., Bharti, G.K., Amiri, I.S. and Yupapin, P. (2020). Spin-wave Generation using MZI Embedded Plasmonic Antenna for Quantum Communications. Opt. Quant. Electron. 52, 241.

Frimmer, M. and Novotny, L. (2014). The Classical Bloch Equations, American Journal of Physics 82, 947-954.

Huang, Y., Wu, F. and Yu, L. (2020). Rabi oscillation study of strong coupling in a plasmonic nanocavity. New Journal of Physics, 22(6), 063053.

Arumona, A.E., Amiri, I.S., Punthawanunt, S. and Yupapin, P. (2020). High-density Quantum Bits Generation using Microring Plasmonic Antenna. Opt. Quant. Electron. 52, 208.

Arumona, A.E., Amiri, I.S., Punthawanunt, S., Ray, K. and Yupapin, P. (2020). Electron density transport using microring circuit for dual-mode power transmission. Opt. Quant. Electron. 52, 213.

Sonasang, S., Jamsai, M., Prabpal, P., Sirikan, P., Jalil, M. A., Pham, N. T., Ray, K. and Yupapin, P. (2022). Multiband Rabi Antenna using Nest Microstrip Add-Drop Filter (NMADF) for Relativistic Sensing Applications. Microwave and Optical Technology Letters. Under Review.

Downloads

Published

2022-06-30

How to Cite

S. Sonasang, P. Prabpal, P. Hakaew, P. Sirikan, S. Boonkirdram, Nhat Truong Pham, P. Youplao, & P. Yupapin. (2022). Proposal of Relativistic Electronic Circuit using Microstrip Add-drop Multiplexer. Journal of Industrial Technology and Innovation, 1(1), 246559. https://doi.org/10.55674/snrujiti.v1i1.246559