Proposal of Relativistic Electronic Circuit using Microstrip Add-drop Multiplexer
DOI:
https://doi.org/10.55674/snrujiti.v1i1.246559Keywords:
Relativistic electronics, Microstrip, Rabi oscillation, Warp speed, Two-level systemAbstract
This paper presents a brief detail of the relativistic circle that can be applied for various applications. Relativistic electronics is the challenged device that has the capacity of the new era of technology called civilian technology. Non-relativistic electronics have the limitation that the speed of operation cannot serve the demand of the required applications. The technique to achieve electron transmission faster than light has not been realistic yet. This work has proved that electron speed faster than the speed of light can be realized using the relativistic circle. The functions of the operations are the Rabi oscillation and the successive
filtering. The AC source is input into the microstrip add-drop multiplexer. The wave-particle of the signal oscillation within the microstrip can be obtained. The higher filtering frequency gives the higher electron warp speed. In applications, broadband plasma frequencies can be generated for various applications.
References
Prabpal, P., Youplao, P., Ray, K., Boonkirdram, S. and Yupapin, P. (2022). Optical black hole characteristics using microring space‐time distortion circuit. Microwave and Optical Technology Letters. Early Online: 2022, DOI: 10.1002/mop.33282.
P. Yupapin. Optical Rabi antenna. Optica Webinar 2022, https://www.optica.org/ enus/meetings/webinar/2022/02 february/ optical rabi antenna/, 2022.
Panov, E. I. (2018). Direct current regimes in the linear electric circuits according to the relativistic circuit theory. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 2(1), 17-29.
Panov, E. I. (2018). Alternating current regimes in linear electric circuits according to the relativistic circuit theory. ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA, 2(2), 20-39.
Sonasang, S., Prabpal, P., Sirikan, P., Hakaew, P., Pham, N. T., Yupapin, P., ... and Boonkirdram, S. (2022). Rabi antenna using microstrip add-drop multiplexer for electron warp speed investigation. Chinese Optics Letters, 20(7), 073901.
Garhwal, A., Arumona, A.E., Youplao, P., Ray, K. and Amiri, I.S. and Yupapin, P. (2021). Human-like Stereo Sensors using Plasmonic Antenna Embedded MZI with Space-time Modulation Control. Chinese Optics Letters 19, 101301.
Suwandee, S., Arumona, A. E., Ray, K., Youplao, P. and Yupapin, P. (2020). Mindfulness model using polariton oscillation in plasmonic circuit for human performance management. Axioms, 9(3), 76.
Assimakopoulos, V. (1995). A successive filtering technique for identifying long‐term trends. Journal of Forecasting, 14(1), 35-43.
Phatharacorn, P., Chiangga, S. and P. Yupapin, P. (2016). Analytical and Simulation Results of a Triple Micro Whispering Gallery Mode Probe System for a 3D Blood Flow Rate Sensor. Applied Optics 55, 9504-9513.
Garhwal, A., Arumona, A.E., Ray, K., Youplao, P., Suwandee, S. and Yupapin, P. (2020). Microplasma Source Circuit using Microring Space-time Distortion Control, IEEE Transactions on Plasma Science 48, 3600-3605.
Mookherjea, S. and Schneider, M. A. (2008). The nonlinear microring add-drop filter. Optics Express, 16(19), 15130-15136.
Tavousi, A., Mansouri-Birjandi, M. A., Ghadrdan, M. and Ranjbar-Torkamani, M. (2017). Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photonic Network Communications, 34(1), 131-139.
Youplao, P., Sarapat, N., Porsuwancharoen, N., Chaiwong, K., Jalil, M. A., Amiri, I. S., ... and Grattan, K. T. V. (2018). Plasmonic op-amp circuit model using the inline successive microring pumping technique. Microsystem Technologies, 24(9), 2018, 3689-3695.
Arumona, A.E., Amiri, I.S. and Yupapin, P. (2020). Plasmonic Micro Antenna Characteristics using Gold Grating Embedded in a Panda-ring Circuit. Plasmonics 15, 279–285.
Garhwal, A., Ray, K., Arumona, A.E., Bharti, G.K., Amiri, I.S. and Yupapin, P. (2020). Spin-wave Generation using MZI Embedded Plasmonic Antenna for Quantum Communications. Opt. Quant. Electron. 52, 241.
Frimmer, M. and Novotny, L. (2014). The Classical Bloch Equations, American Journal of Physics 82, 947-954.
Huang, Y., Wu, F. and Yu, L. (2020). Rabi oscillation study of strong coupling in a plasmonic nanocavity. New Journal of Physics, 22(6), 063053.
Arumona, A.E., Amiri, I.S., Punthawanunt, S. and Yupapin, P. (2020). High-density Quantum Bits Generation using Microring Plasmonic Antenna. Opt. Quant. Electron. 52, 208.
Arumona, A.E., Amiri, I.S., Punthawanunt, S., Ray, K. and Yupapin, P. (2020). Electron density transport using microring circuit for dual-mode power transmission. Opt. Quant. Electron. 52, 213.
Sonasang, S., Jamsai, M., Prabpal, P., Sirikan, P., Jalil, M. A., Pham, N. T., Ray, K. and Yupapin, P. (2022). Multiband Rabi Antenna using Nest Microstrip Add-Drop Filter (NMADF) for Relativistic Sensing Applications. Microwave and Optical Technology Letters. Under Review.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Industrial Technology and Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.