PARAMETERS OPTIMIZATION FOR ARTIFICIAL BONE FORMING BY USING DESIGN OF EXPERIMENT TECHNIQUE.
Main Article Content
Abstract
This research aims to evaluate the suitable condition on artificial bone production using hydroxyapatite - carboxymethyl cellulose – poly (methyl methacrylate) composite by design of experiment technique. The methods were carried out by casting forming technique using bovine bone as composite polymer. The ratio of hydroxyapatite - carboxymethyl cellulose – poly (methyl methacrylate) composite were studied by tensile strength analysis. The result generated the compact bone substitute materials which have the mechanical properties similar to human bone as well as biocompatible qualification. The use of hydroxyapatite composition is the next step of artificial bone for human body creation in the future.
Article Details
Section
บทความวิจัย
References
นิธินาถ ศุภกาญจน์. 2549.โครงการการผลิตพอลิโพรพิลีนคอมโพสิตโดยใช้ไฮดรอกซีอะพาไทต์จากกระดูกสัตว์เป็นสารตัวเติมเพื่อใช้เป็นวัสดุทดแทนกระดูก. มหาวิทยาลัยเทคโนโลยีสุรนารี.
Bas, D., Boyac, I.H., 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering,78: 836–845.
Cengiz, B., Gokce, Y., Yildiz , N., Aktas, Z., Calimli, A., 2008. Synthesis and characterization of hydroxyapatite nanoparticles. Colloids and Surfaces A: Physicochem, 322: 29-33.
Han, J., Ma, G., Nie, J., 2011. A facile fabrication of porous PMMA as a potential bone substitute. Materials Science and Engineering C, 31: 1278–1284.
Jiang, L., Li, Y., Wang, X., Zhang, L., Wen, J., Gong, M., 2008. Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydrate Polymers, 74: 680–684.
Joschek, S., Nies, B., Krotz, R., GoK pferich, A., 2000. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 21, 1645-1658.
Kalita, S.J., Bose, S., Hosick, H.L., Bandyopadhyay, A., 2004. CaO–P2O5–Na2O-based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials, 25: 2331–2339.
Kim, S.B., Kim, Y.J., Yoon, T.L., Park, S.A., Cho, I.H., Kim, E.J., Kim, I.A., Shin, J.W., 2004.The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomaterials, 25: 5715–5723.
Korkusuz, F., Karamete, K., Irfanoglu, B., Yetkin, H., Hastir, G.W., Akkaq, N. 1995. Do porous calcium hydroxyapatite ceramics cause porosis in bone? A bone densitometry and biomechanical study on cortical bones of rabbits.” Biomaterial. 16, 537-543.
Lee, K.H., Rhee, S.H. 2009. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2–CaO nanocomposite. Biomaterials, 30: 3444–3449.
Mow, V.C. and Huiskes, R. 2005. Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams & Wilkins, Philadelphia.698 p.
Ooi, C.Y., Hamdi, M., Ramesh, S. 2007. Properties of hydroxyapatite produced by annealing of bovine bone. Ceramics International, 33: 1171–1177.
Sanosh, K.P., Chu, M-C., Balakrishnan, A., Lee, Y-J., Kim, T.N., Cho, S-J. 2009. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Current Applied Physics, 9: 1459-1462.
Serbetci, K., Korkusuz, F., Hasirci, N. 2004. Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polymer Testing, 23: 145–155.
Shahsavani, D., Grimvall, A. 2009. An adaptive design and interpolation technique for extracting highly nonlinear response surfaces from deterministic models. Reliability Engineering and System Safety, 94: 1173–1182.
Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M. 1997. Hydroxyapatite ceramics with selected sintering additives. Biomaterials, 18: 923-933.
Tan, C.Y., Ramesh, S., Hamdi, A.S., Sopyan, I. 2007. Sinterability Of Hydroxyapatite Compacts Prepared By Cold Isostatic Pressing For Clinical Applications. Biomed 06, IFMBE Proceedings, 15: 137-140.
Tihan, T.G., Ionita, M.D., Popescu, R.G., Iordachescu, D. 2009. Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methylmethacrylate) (PMMA)–hydroxyapatite (HA) composites. Materials Chemistry and Physics, 118: 265–269.
Bas, D., Boyac, I.H., 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering,78: 836–845.
Cengiz, B., Gokce, Y., Yildiz , N., Aktas, Z., Calimli, A., 2008. Synthesis and characterization of hydroxyapatite nanoparticles. Colloids and Surfaces A: Physicochem, 322: 29-33.
Han, J., Ma, G., Nie, J., 2011. A facile fabrication of porous PMMA as a potential bone substitute. Materials Science and Engineering C, 31: 1278–1284.
Jiang, L., Li, Y., Wang, X., Zhang, L., Wen, J., Gong, M., 2008. Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydrate Polymers, 74: 680–684.
Joschek, S., Nies, B., Krotz, R., GoK pferich, A., 2000. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 21, 1645-1658.
Kalita, S.J., Bose, S., Hosick, H.L., Bandyopadhyay, A., 2004. CaO–P2O5–Na2O-based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials, 25: 2331–2339.
Kim, S.B., Kim, Y.J., Yoon, T.L., Park, S.A., Cho, I.H., Kim, E.J., Kim, I.A., Shin, J.W., 2004.The characteristics of a hydroxyapatite–chitosan–PMMA bone cement. Biomaterials, 25: 5715–5723.
Korkusuz, F., Karamete, K., Irfanoglu, B., Yetkin, H., Hastir, G.W., Akkaq, N. 1995. Do porous calcium hydroxyapatite ceramics cause porosis in bone? A bone densitometry and biomechanical study on cortical bones of rabbits.” Biomaterial. 16, 537-543.
Lee, K.H., Rhee, S.H. 2009. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO2–CaO nanocomposite. Biomaterials, 30: 3444–3449.
Mow, V.C. and Huiskes, R. 2005. Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams & Wilkins, Philadelphia.698 p.
Ooi, C.Y., Hamdi, M., Ramesh, S. 2007. Properties of hydroxyapatite produced by annealing of bovine bone. Ceramics International, 33: 1171–1177.
Sanosh, K.P., Chu, M-C., Balakrishnan, A., Lee, Y-J., Kim, T.N., Cho, S-J. 2009. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition. Current Applied Physics, 9: 1459-1462.
Serbetci, K., Korkusuz, F., Hasirci, N. 2004. Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polymer Testing, 23: 145–155.
Shahsavani, D., Grimvall, A. 2009. An adaptive design and interpolation technique for extracting highly nonlinear response surfaces from deterministic models. Reliability Engineering and System Safety, 94: 1173–1182.
Suchanek, W., Yashima, M., Kakihana, M., Yoshimura, M. 1997. Hydroxyapatite ceramics with selected sintering additives. Biomaterials, 18: 923-933.
Tan, C.Y., Ramesh, S., Hamdi, A.S., Sopyan, I. 2007. Sinterability Of Hydroxyapatite Compacts Prepared By Cold Isostatic Pressing For Clinical Applications. Biomed 06, IFMBE Proceedings, 15: 137-140.
Tihan, T.G., Ionita, M.D., Popescu, R.G., Iordachescu, D. 2009. Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methylmethacrylate) (PMMA)–hydroxyapatite (HA) composites. Materials Chemistry and Physics, 118: 265–269.