SEISMIC DISPLACEMENT EVALUATION OF REINFORCED CONCRETE BUILDING BY CYCLIC PUSHOVER ANALYSIS

Main Article Content

คำรบ บำรุงราษฎร์
ไพบูลย์ ปัญญาคะโป

Abstract

This research presents the seismic displacement evaluation of reinforced concrete building by Cyclic Pushover Analysis. This method provides a set of applied lateral forces that is close to an earthquake loading. The 4-storey reinforced concrete school building was selected for this research. For the peak roof displacement analysis, four pattern of loading protocols were used as the lateral force applied to the building. The responses were compared with Pushover Analysis and Nonlinear Dynamic Analysis which provided the most accurate results. Ten pairs of ground motions were scaled to match the design spectra of the northern region of Thailand. The results show that the average errors of the peak roof displacement, the peak story displacement, the peak inter-story drift ratio and the damage indices of Cyclic Pushover Analysis were 11.6, 6.1, 16.5 and 34.7% respectively when they were compared with Nonlinear Dynamic Analysis. These results were closer than those of Pushover Analysis because the stiffness degrading consideration in loading protocols were consistent with the earthquake loading. Thus, The results are more reliable than the Pushover Analysis.

Article Details

Section
บทความวิจัย

References

ไพบูลย์ ปัญญาคะโป. 2552. “กำลังต้านทานแผ่นดินไหวของอาคารโดยวิธีการผลักแบบวัฏจักร.” เอกสารการประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ 14. มหาวิทยาลัยเทคโนโลยีสุรนารี.

ไพบูลย์ ปัญญาคะโป. 2554. “การประเมินความเสียหายภายใต้แรงแผ่นดินไหวของอาคารสูงโดยวิธีการผลักแบบวัฏจักร.” รายงานการวิจัย. มหาวิทยาลัยศรีปทุม.

American Society of Civil Engineering (ASCE). 2007. Seismic rehabilitation of existing building. ASCE Standard No. ASCE/SEI 41-06


Antoniou, S. Pinho, R. 2004 “Development and verification of a displacement-based adaptive pushover procedure.” Journal of Earthquake Engineering, 8(5) : 643-661

Carr, A.J. 2006. Ruaumoko User Manual, University of Canterbury, New Zealand.

Chopra, A. K. and Goel, R. K. 2002. “A modal pushover analysis procedure for estimating seismic demands for buildings.” Earthquake Engineering and Structural Dynamics. 31 : 561-582

Chopra, A. K. and Goel, R. K. 2005. “Role of higher mode pushover analysis in seismic analysis of buildings.” Earthquake Spectra. 21(4) : 1027-1041

Chopra, A. K., Goel, R. K. and Chintanapakdee 2004. “Evaluation of a Modified MPA procedure assuming higher modes as elastic to estimate seismic demands.” Earthquake Spectra. 20(3) : 757-778

FEMA. 2005. NEHRP Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA 440). Federal Emergence Management Agency, Washington D.C.

Goel, R. K. and Chopra, A. K. 2004. “Evaluation of modal and FEMA pushover analysis; SAC buildings.” Earthquake Spectra. 20(1) : 225-254

Panyakapo, P. 2010. “Seismic Performance of RC Building by Cyclic Pushover Analysis.” The 7th International Conference of Urban Earthquake Engineering (7 CUEE) and The 5th International Conference on Earthquake Engineering (5 ICEE), Tokyo, Japan.

Papanikolaou, V. K., Elnasshai, A. S., Pareja, J. F. 2006. “Evaluation of conventional and adaptive pushover analysis II: Comparative results.” Journal of Earthquake Engineering, 10(1): 127-151

Park, Y. J. and Ang, A. H. 1985. “Mechanistic seismic damage model for reinforced concrete.” Journal of Structure Engineering, ASCE, 111(4): 722-739

Sezen, H. and Chowdhury, T. 2009. “Hysteretic Model for Reinforced Concrete Columns Including The Effect of Shear and Axial Load Failure.” Journal of Structure Engineering, ASCE, 135(2): 139-146