Optimization of Biochar Yield from Sweet Corn Residue Through Slow Pyrolysis Using Response Surface Methodology
Keywords:
Biochar, Slow Pyrolysis, Experimental Design, Response Surface Methodology, OptimizationAbstract
This research aimed to optimize the biochar production process from sweet corn residues through slow pyrolysis. The experimental design was based on the Box-Behnken Design (BBD) to evaluate the effects of pyrolysis temperature, heating rate, and holding time on the biochar yield. The experimental data were analyzed using Response Surface Methodology (RSM) to develop a quadratic model. The results indicated that pyrolysis temperature had a significantly negative impact on %Yield, and significant interactions among the three factors were also observed. Numerical optimization revealed that the highest predicted yield of 49.2% could be achieved at 300 °C, 2 °C/min heating rate, and 2 hours holding time. The model’s reliability was confirmed by additional randomized experiments, with an average absolute deviation of only 1.97%.
References
กิตติกร สาสุจิตต์, วราพงศ์ แสนพินิจ, ณัฐพงษ์ วงค์รินทร์, และ ณัฐวุฒิ ดุษฎี. (2558). การผลิตเชื้อเพลิงอัดแท่งจากวัสดุเหลือทิ้งซังและเปลือกข้าวโพดด้วยเทคนิคการอัดรีดขึ้นรูปโดยใช้ตัวประสานแป้งมันผสมปูนขาว. วารสารมหาวิทยาลัยทักษิณ. 18(1): 5-14.
รุ่งทิวา วงศ์ไพศาลฤทธิ์ และ วิชาญ พงษ์สานต์คีรี. (2563). ฤทธิ์การต้านอนุมูลอิสระของน้ำนมข้าวโพดสามสายพันธุ์. วารสารวิชาการและวิจัย มทร.พระนคร. 14(2) : 152-159.
วิโรจน์ เจษฎาลักษณ์, ณัฐริกา ศรีเกตุ, ปิยมาส ชูดี, และ สุภาวดี หงส์ทอง. (2564). ต้นแบบผลิตภัณฑ์ภาชนะสำหรับอาหารแห้งจากเปลือกข้าวโพด. วารสารวิชาการมหาวิทยาลัยราชภัฏเพชรบุรี. 11(2) : 11-21.
Abdul Raheem, A., Ding, L., He, Q., Mangi, F. H., Khand, Z. H., Sajid, M., Ryzhkov, A., & Yu, G. (2022). Effective pretreatment of corn straw biomass using hydrothermal carbonization for co-gasification with coal: Response surface methodology–Box Behnken design. Fuel, 324(Part B), 124544.
Adelawon, B. O., Latinwo, G. K., Eboibi, B. E., Agbede, O. O., & Agarry, S. E. (2021). Comparison of the slow, fast, and flash pyrolysis of recycled maize-cob biomass waste, Box-Behnken process optimization and characterization studies for the thermal fast pyrolysis production of bio-energy. Chemical Engineering Communications, 209(9), 1246–1276.
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., ... & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.
Al Arni, S. (2018). Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 124, 197–201.
Jiao, Y., Chen, H. D., Han, H., & Chang, Y. (2022). Development and utilization of corn processing by-products: A review. Foods, 11(22), 3709–3727.
Lataf, A., Jozefczak, M., Vandecasteele, B., Viaene, J., Schreurs, S., Carleer, R., ... & Vandamme, D. (2022). The effect of pyrolysis temperature and feedstock on biochar agronomic properties. Journal of Analytical and Applied Pyrolysis, 168, 105728.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2016). Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of The Total Environment, 543, 295–306.
Montgomery, D. C. (2017). Design and analysis of experiments (9th ed.). Wiley.
Nguyen, T. Q. N., Nguyen, P. H., Vo, M. T., & Le, V. V. M. (2024). Utilizing sweet corn “milk” residue to develop fiber-rich pasta: Effects of replacement ratio and transglutaminase treatment on pasta quality. Journal of Food Processing and Preservation, 2024(1), 5853459–5853467.
Nurhayati, I., Kurniawati, C. T., & Kholif, M. A. (2025). Sustainable bioplastics from sweet corn cob waste: Influence of zinc oxide and glycerol on mechanical properties and biodegradability. Indonesian Journal of Environmental Management and Sustainability, 9, 1–11.
Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255–273.
University of Nebraska-Lincoln. (2018). Corn residue removal and CO2 emissions. CropWatch. Retrieved March 22, 2025, from https://cropwatch.unl.edu/2018/corn-residue-removal-and-co2-emissions/
Yadav, S. P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., ... & Shrestha, R. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498.