EEG Effectiveness of Virtual Reality the Study Acrophobia for the Emotional Elicitation

Main Article Content

ภูวดล ศิริกองธรรม
วรภัทร ไพรีเกรง

Abstract

The anxiety can be phobia to objects or situations which makes people unable to control fear and cannot confront with frightened situation. So the people will try to avoid such a situation. When they encounter or expect to be confronted with something that they fear, the situation will cause severe anxiety and lead to physical appearance such as shaking, sweating or heart pounding. This anxiety greatly affects personal being. Therefore, this research aims to study the changes in electroencephalogram (EEG) related to specific anxiety (Acrophobia). The samples in the experiment can be divided into 2 groups which are experimental group and controlled group using anxiety screening test by Zung Self-Rating Anxiety Scale and virtual reality for simulating the scenarios. When the controlled group wears the virtual reality glasses, the ecosystems and environment enforce the samples feel uncomfortable and anxious. This leads to the changes in electroencephalogram and measured by Neurosky MindWave. The Paired sample t-test has been used in this experiment. It showed that the frequency of Alpha, Beta and Gamma waves had been increased significantly with 0.05 (p≤0.05), whereas Delta and Theta waves had not been changed. The benefits of this research will be the guidelines for managing the problems related to immediate and fatal anxiety. It can be extended to measure the fear and anxiety for psychological patients directly using electroencephalogram. This method can measure brainwave and obtain the actual data rather than using questionnaire.

Article Details

How to Cite
[1]
ศิริกองธรรม ภ. and ไพรีเกรง ว., “EEG Effectiveness of Virtual Reality the Study Acrophobia for the Emotional Elicitation”, JIST, vol. 9, no. 2, pp. 56–62, Dec. 2019.
Section
Research Article: Human-Computer Interaction (Detail in Scope of Journal)

References

จุฑารัตน์ สถิรปัญญา. (2552). สุขภาพจิต (Mental Health). พิมพ์ครั้งที่ 2. สงขลา: บริษัทนำศิลป์โฆษณาจำกัด

บุญเรือง ไตรเรืองวุฒิ. (2560). บทความกรมสุขภาพจิตพบ 5 กลุ่มโรคหลักก่อปัญหาสุขภาพจิตคนไทยสูงถึง 7ล้านคน : เว็บไซต์กรมสุขภาพจิต https://bit.ly/2Deh2oa [Accessed Jan. 1, 2019].

บุญเรือง ไตรเรืองวุฒิ. (2561). บทความกรมสุขภาพจิต กรมสุขภาพจิต เผย “ ปัญหาเครียด” ครองแชมป์ปรึกษาสายด่วน 1323 ในปี 60 แนะคนทำงานใช้ 10 วิธีลดปัญหา!!: เว็บไซต์กรมสุขภาพจิต https://bit.ly/2oBbmwY [Accessed Mar. 3, 2019].

Spielberger, C.D. (1983). Manual for the State-TraitAnxiety Inventory (Form Y). Consulting Psychology Press, Palo Alto, CA.

William WK Zung. A Rating Instrument for Anxiety Disorders. 12(6): Psychosomatics 371-379. 1971.

Klados, M. A., Pandria, N., Athanasiou, A., & Bamidis, P. D. (2017). An Automatic EEG Based System for the Recognition of Math Anxiety. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS).

Baas, J.M., Nugent, M., Lissek, S., Pine, D.S. and Grillon, C. (2004). Fear conditioning in virtual reality contexts: a new tool for the study of anxiety. Biol. Psychiatr., 55, 1056–1060