Prediction of PM2.5 Dust Concentration Using Machine Learning Techniques To support forecasting, advanced Machine Learning technology is therefore employed to assist in the study of PM2.5 dust concentration prediction in advance.

Main Article Content

Panida Mahahing
Pradthana Minsan

Abstract

Fine particulate matter (PM2.5) is a significant air pollution issue, particularly in urban areas with high emissions, such as Bangkok, Thailand, and Guangzhou, China—one of the most populous cities in the world. This research focuses on developing a predictive system for PM2.5 concentration using machine learning techniques, including Linear Regression (LR), Support Vector Regression (SVR), and XGBoost, to aid in air pollution monitoring and management. The dataset used in this study is a secondary source containing recorded PM2.5 values from Guangzhou, China, between 2010 and 2015. Experimental comparisons of the three models reveal that XGBoost demonstrates the highest predictive performance across all timeframes. Specifically, for the 1-hour ahead prediction, the XGBoost model incorporating historical PM2.5 averages and seasonal data achieved an R² of 0.6728, MAE of 12.06, and RMSE of 17.87, outperforming both LR and SVR. Furthermore, the predictive performance of all models declined as the forecasting timeframe increased, but XGBoost consistently outperformed the other methods in every scenario. The inclusion of seasonal information and historical PM2.5 averages significantly enhanced the model’s ability to predict future PM2.5 concentrations.

Article Details

How to Cite
[1]
P. Mahahing and P. Minsan, “5 dust concentration prediction in advance”., JIST, vol. 15, no. 1, pp. 1–9, Jun. 2025.
Section
Research Article: Soft Computing (Detail in Scope of Journal)

References

Carlos Ordóñez , Ruth M. Doherty. (2023). Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change. เล่มที่ 23 ฉบับที่ 4

Fan W, Xu L, Zheng H. Using Multisource Data to Assess PM2.5 Exposure and Spatial Analysis of Lung Cancer in Guangzhou, China. Int J Environ Res Public Health. 2022 Feb 24;19(5):2629. doi: 10.3390/ijerph19052629. PMID: 35270346; PMCID: PMC8910196.

Jay Chugh. (December 13, 2018 ). Types of Machine Learning and Top 10 Algorithms Everyone Should Know. สืบค้นจาก https://blogs.oracle.com/ai-and-datascience/post/types-of-machine-learning-and-top-10-algorithms-everyone-should-know

P. Minsan and W. Panichkitkosolkul. (2024). Enhancing decomposition and Holt-Winters weekly forecasting of pm2.5 concentrations in Thailand’s eight northern provinces using the cuckoo search algorithm. Thailand Statistician, 22(4), 963–985.

Minsan, P. and W. Minsan. (2024a). Decomposition and Holt-Winters techniques enhanced by whale optimization algorithm: case study of pm2.5 forecasting in 8 northern provinces of Thailand. Thai Science and Technology Journal, 32(6), 12-34.

Tianqi Chen , Carlos Guestrin. (2016). XGBoost: A Scalable Tree Boosting System. University of Washington. สืบค้นจาก https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf

กชรัตน์ นฤพัฒน์ผจง , นภา แซ่เบ๊. (2566). การเรียนรู้ของเครื่องสำหรับการทำนายค่าความเข้มของฝุ่นละอองขนาดเล็ก (PM2.5). หลักสูตรวิทยาศาสตรมหาบัณฑิต คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

กระทรวงสาธารณสุข, ก. (2566). รายงานสรุปสถานการณ์และผลการดำเนินงานด้าน การแพทย์และสาธารณสุข กรณี หมอกควันและฝุ่นละอองขนาดเล็ก ปี 2567. กองประเมินผลกระทบต่อสุขภาพ กรมอนามัย กระทรวงสาธารณสุข.