Association Rule Mining to Identify Clinical Factors Linked to Disease Severity in Liver Cirrhosis

Main Article Content

Rachasak Somyanonthanakul

Abstract

This study applies the association rule mining to identify critical clinical patterns linked to different stages of liver cirrhosis. Utilizing data from the Mayo Clinic primary biliary cirrhosis trial (1974-1984), the research analyzed 5,805 patient records after applying inclusion and exclusion criteria. The Apriori algorithm was used to extract association rules, with measures including support, confidence, and lift. The analysis revealed distinct factors associated with each disease stage. For instance, Stage 1 was strongly linked with normal laboratory values like SGOT and Bilirubin. Stage 3 was predominantly associated with abnormal clinical markers, including high prothrombin, low platelets, and age over 60. A dendrogram further clustered these factors, visually reinforcing the associations. The discovered rules provide valuable insights into the combinations of clinical and laboratory features that characterize cirrhosis progression. These findings can aid in early risk stratification and inform clinical decision-making for targeted patient management.

Article Details

How to Cite
[1]
R. Somyanonthanakul, “ Association Rule Mining to Identify Clinical Factors Linked to Disease Severity in Liver Cirrhosis”, JIST, vol. 15, no. 2, pp. 77–84, Dec. 2025.
Section
Research Article: Multidisciplinary (Detail in Scope of Journal)

References

Schuppan, D., & Afdhal, N. H. (2008). Liver cirrhosis. The Lancet, 371(9615), 838-851.

Battle, A., Mudd, J., Ahlenstiel, G., & Kalo, E. (2025). Liver Cirrhosis: Evolving Definitions, and Recent Advances in Diagnosis, Prevention and Management. Livers, 5(3), 28.

World Health Organization. (2024). Global hepatitis report 2024: action for access in low-and middle-income countries. World Health Organization.

Alberts, C. J., Clifford, G. M., Georges, D., Negro, F., Lesi, O. A., Hutin, Y. J., & de Martel, C. (2022). Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: a systematic review. The Lancet Gastroenterology & Hepatology, 7(8), 724-735.

Castéra, L., Nègre, I., Samii, K., & Buffet, C. (1999). Pain experienced during percutaneous liver biopsy. Hepatology, 30(6), 1529-1530.

Wu, D., Jing, X. Y., Zhang, H., Kong, X., Xie, Y., & Huang, Z. (2020). Data‐driven approach to application programming interface documentation mining: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(5), e1369.

Rojarath. A., Jantama, T., Srirat, W., Mookpakdee, N., khumwiso, K., Surinta, O. (2024). Factors analysis affecting stroke disease revealed using association rules. J Sci Technol MSU. 206-222.

Sirichamratsakul, K., Sangkhathat, S., Chongsuvivatwong, V. (2025). Referral Patterns, Co-occurring Conditions and Survival Outcomes of Biliary Atresia in Thailand: A Data Mining Study from the National Health Security Office Registry. Siriraj Medical Journal, 77(9), 610-619.

Patel, P., Sivaiah, B., & Patel, R. (2022). Relevance of frequent pattern (FP)-growth-based association rules on liver diseases. In Intelligent Systems: Proceedings of ICMIB 2021 (pp. 665-676). Singapore: Springer Nature Singapore

Ferreira, D., Silva, S., Abelha, A., & Machado, J. (2020). Recommendation system using autoencoders. Applied Sciences, 10(16), 5510.

Moreira, A., Duarte, J., & Santos, M. F. (2023). Case study of multichannel interaction in healthcare services. Information, 14(1), 37.

. Dickson, E. R., Grambsch, P. M., Fleming, T. R., Fisher, L. D., & Langworthy, A. (1989). Prognosis in primary biliary cirrhosis: model for decision making. Hepatology (Baltimore, Md._)_, 10(1), 1–7. [https://doi.org/10.1002/hep.1840100102](https://doi.org/10.1002/hep.1840100102)

Chirapongsathorn, S., Poovorawan, K., Soonthornworasiri, N., Pan-Ngum, W., Phaosawasdi, K., & Treeprasertsuk, S. (2020). Thirty-Day Readmission and Cost Analysis in Patients With Cirrhosis: A Nationwide Population-Based Data. _Hepatology communications_, _4_(3), 453–460. [https://doi.org/10.1002/hep4.1472](https://doi.org/10.1002/hep4.1472)

Supot Nimanong, M. D., Lukana Preechasuk, M. D., & Tawesak Tanwandee, M. D. (2020). Incidence and Characteristic of Hepatocellular Carcinoma in Hepatitis B Related Cirrhosis. J Med Assoc Thai, 103(8), S128-33.

Ruangsawat, S., Soivong, P., Suksatit, B. (2020). ปัจจัยที่เกี่ยวข้องกับ พฤติกรรม การจัดการตนเองในผู้ที่เป็นโรคตับ แข็ง. Journal of Health and Nursing Research Vol.36 (3), 123-34.

Scaglione, S., Kliethermes, S., Cao, G., Shoham, D., Durazo, R., Luke, A., & Volk, M. L. (2015). The epidemiology of cirrhosis in the United States: a population-based study. Journal of clinical gastroenterology, 49(8), 690-696.

Goldberg, D. S., Taddei, T. H., Serper, M., Mehta, R., Dieperink, E., Aytaman, A., & Kaplan, D. E. (2017). Identifying barriers to hepatocellular carcinoma surveillance in a national sample of patients with cirrhosis. Hepatology, 65(3), 864-874.

Singal, A. G., Tiro, J., Li, X., Adams-Huet, B., & Chubak, J. (2017). Hepatocellular carcinoma surveillance among patients with cirrhosis in a population-based integrated health care delivery system. Journal of clinical gastroenterology, 51(7), 650-655.

Bunnag, K., Seetalarom, N., Kongsompong, A., & Chirapongsathorn, S. (2019). IDDF2019-ABS-0076 Quality of care and cost analysis for cirrhosis management in a large university-based hospital in thailand.

Yang, M., Parikh, N. D., Liu, H., Wu, E., Rao, H., Feng, B. O., & Lok, A. S. (2020). Incidence and risk factors of hepatocellular carcinoma in patients with hepatitis C in China and the United States. Scientific Reports, 10(1), 20922.

McPhail, S. M. (2016). Multimorbidity in chronic disease: impact on health care resources and costs. Risk management and healthcare policy, 143-156.