The การจำแนกเด็กที่มีภาวะออทิสติกโดยประยุกต์การวิเคราะห์ภาพวาดด้วยการเรียนรู้เชิงลึก การวิจัยนี้นำเสนอการประยุกต์ใช้เทคนิคการเรียนรู้เชิงลึกในการวิเคราะห์ภาพวาดของเด็กเพื่อจำแนกภาวะออทิสติกอย่างมีประสิทธิภาพ
Main Article Content
บทคัดย่อ
ปัจจุบันการวินิจฉัยภาวะออทิสติกในเด็กยังอาศัยการสังเกตพฤติกรรมและแบบทดสอบทางจิตวิทยา ซึ่งอาจมีข้อจำกัดด้านความแม่นยำและความรวดเร็ว งานวิจัยนี้จึงประยุกต์ใช้เทคนิคการเรียนรู้ของเครื่อง โดยเฉพาะโครงข่ายประสาทเทียมแบบคอนโวลูชัน (CNN) ด้วยโมเดล ResNet50 เพื่อวิเคราะห์และจำแนกภาพวาดของเด็กที่มีและไม่มีภาวะออทิสติก โดยแบ่งกลุ่มตัวอย่างตามช่วงอายุ 5–8 ปี และ 9–12 ปี และประเมินผลด้วยค่า Accuracy, Recall, Specificity, F1-Score และ Confusion Matrix ผลการทดลองพบว่าโมเดลสามารถจำแนกภาพวาดได้อย่างแม่นยำ โดย Accuracy อยู่ที่ 81.9% และ 89.5%และ F1-Score เท่ากับ 0.83 และ 0.91 สำหรับกลุ่มอายุ 5–8 ปี และ 9–12 ปี ตามลำดับ หลังจากใช้ Data Augmentation ความแม่นยำเพิ่มขึ้นเป็น 87.7% และ 91.1% พร้อมค่า F1-Score ที่เพิ่มเป็น 0.89 และ 0.93 อย่างไรก็ตาม งานวิจัยยังมีข้อจำกัดด้านขนาดและความหลากหลายของข้อมูล ซึ่งควรขยายในอนาคตเพื่อเพิ่มความแม่นยำของโมเดล
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
I/we certify that I/we have participated sufficiently in the intellectual content, conception and design of this work or the analysis and interpretation of the data (when applicable), as well as the writing of the manuscript, to take public responsibility for it and have agreed to have my/our name listed as a contributor. I/we believe the manuscript represents valid work. Neither this manuscript nor one with substantially similar content under my/our authorship has been published or is being considered for publication elsewhere, except as described in the covering letter. I/we certify that all the data collected during the study is presented in this manuscript and no data from the study has been or will be published separately. I/we attest that, if requested by the editors, I/we will provide the data/information or will cooperate fully in obtaining and providing the data/information on which the manuscript is based, for examination by the editors or their assignees. Financial interests, direct or indirect, that exist or may be perceived to exist for individual contributors in connection with the content of this paper have been disclosed in the cover letter. Sources of outside support of the project are named in the cover letter.
I/We hereby transfer(s), assign(s), or otherwise convey(s) all copyright ownership, including any and all rights incidental thereto, exclusively to the Journal, in the event that such work is published by the Journal. The Journal shall own the work, including 1) copyright; 2) the right to grant permission to republish the article in whole or in part, with or without fee; 3) the right to produce preprints or reprints and translate into languages other than English for sale or free distribution; and 4) the right to republish the work in a collection of articles in any other mechanical or electronic format.
We give the rights to the corresponding author to make necessary changes as per the request of the journal, do the rest of the correspondence on our behalf and he/she will act as the guarantor for the manuscript on our behalf.
All persons who have made substantial contributions to the work reported in the manuscript, but who are not contributors, are named in the Acknowledgment and have given me/us their written permission to be named. If I/we do not include an Acknowledgment that means I/we have not received substantial contributions from non-contributors and no contributor has been omitted.
เอกสารอ้างอิง
โรงพยาบาลเมดพาร์ค.(2023).ออทิสติก (ASD).สืบค้น 24 ธันวาคม 2024.จากhttps://www.medparkhospital.com/disease-and-treatment/autism-spectrum-disorder
แหล่งข้อมูลศิลปะบำบัด.(2023).The Power of Art Therapy for Children with Autism.สืบค้น 24 ธันวาคม 2024.จากhttps://arttherapyresources-com-au.translate.goog/children-autism/?_x_tr_sl=en&_x_tr_tl=th&_x_tr_hl=th&_x_tr_pto=tc
Disrupt.(2024).Machine learning (ML) คืออะไรเทคโนโลยีที่องค์กรต้องรู้.สืบค้น 24 ธันวาคม 2024.จาก https://www.disruptignite.com/blog/machine-learning
Rocco Quaglia, Claudio Longobardi, Nathalie O. Iotti, Laura E. Prino Department of Psychology, University of Turin, Italy ,2016
B. Kamala , K S Mahanaga Pooja , S Varsha and Sivapriya ,“ML Based Approach to Detect Autism Spectrum Disorder (ASD)”, Sri Sairam Engineering College, Chennai , 2021.
Jingsheng Deng ,et al. “DIAGNOSING AUTISM SPECTRUM DISORDER USING ENSEMBLE 3D-CNN: A PRELIMINARY STUDY “, Australian National University, Canberra, 2022.
Md. Fazle Rabbi ,et al. “A Convolutional Neural Network Model for Early- Stage Detection of Autism Spectrum Disorder”, Islamic University of Technology, Dhaka,2021.
Rajesh Kumar, Priya Sharma and Anil Verma, “AutiScan: Screening of Autism Spectrum Disorder Specific to Indian Region”, Indian Institute of Technology, Pune ,2023.
V. Kavitha and R. Siva, “Classification Of Toddler, Child, Adolescent and Adult for Autism Spectrum Disorder Using Machine Learning Algorithm”, SRM Institute of Science and Technology Kattankulathur, Chennai, 2023.
Jungpil Shin ,et al. “Handwriting-Based ADHD Detection for Children Having ASD Using Machine Learning Approaches”, The University of Aizu, Japan,2023.
Maedeh Mosharraf and Faezeh Banabazi, “Identifying Children's Personality Styles through Drawing Analysis using Machine”, Rajshahi University of Engineering and Technology, Rajshahi ,2023.
Aura-Loredana Popescu and Nirvana Popescu, “Drawing Interpretation Using Neural Networks and Accessibility Implementation in Mobile Application”, University Politehnica of Bucharest, Romania ,2022.
Amna Hendr,Umar Ozgunalp and Meryem Erbilek Kaya, “Diagnosis of Autism Spectrum Disorder Using Convolutional Neural Networks” , Cyprus International University, Nicosia,2023
