Role of Proline and Betaine on Plant Cell Model Under Salt and Osmotic Stresses

Authors

  • Surasak Laloknam Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok, 10110
  • Songklod Baiya Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110
  • aporn Bualuang Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120
  • Bongkoj Boonburapong -

Keywords:

Salt stress, Osmotic stress, Plant cell model, Proline, Betaine

Abstract

            Salinity and osmotic stresses in the environment affect plant morphology and physiology. Plants uptake and produce osmoprotectants to maintain osmotic homeostasis as a protective mechanism during stressful conditions. The objectives of this research were to 1) investigate the effect of salt and osmotic stresses on proline and betaine content of plant cell models, and 2) investigate the effect of proline and betaine on plant cell models under salt and osmotic stresses. The plant cell models sized 1x1x1 centimeters (radish, potato, and carrot) were soaked in various concentrations of NaCl and sucrose ranging from 0-30% (w/v) and subjected to determine proline and betaine contents every 30 minutes for 180 minutes. The result showed that the highest proline and betaine contents were observed in radish and followed by potato and carrot. All plant cell models were soaked in salt and osmotic stresses with 10 mM proline and 10 mM betaine and subjected to determine fresh weight and volume of the plant cell model every 30 min for 180 min. The results showed that proline could prolong the morphological alteration of all tested plant cell models under osmotic stress. Under salt stress, betaine could prolong the morphological alteration of all tested plant cell models. This finding suggested that proline and betaine are osmoregulators produced by plant cell models under salt and osmotic stresses, and exogenous application of proline and betaine maintains morphological changes of the plant cell model under salt and osmotic stresses

 

Author Biographies

Surasak Laloknam , Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok, 10110

 

 

Songklod Baiya, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110

 

 

aporn Bualuang, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120

 

 

References

เจนนี่ เจา, สายสุณีย์ ลิ้มชูวงศ, สมเกียรติ พรพิสุทธิมาศ, และสุรศักดิ์ละลอกน้ำ. (2553). ผลของความเครียดจากเกลือต่อปริมาณโพรลีนในแคลลัสสละ. วารสารหน่วยวิจัยวิทยาศาสตร์ เทคโนโลยี และสิ่งแวดล้อมเพื่อการเรียนรู้, 1(2), 103 – 107.

โพธิธรณ์ ครรชิตานุรักษ์, กนกกานต์ นาคทอง, ชัยศาสตร คเชนทรสุวรรณ, และสุรศักดิ์ละลอกน้ำ. (2555). ผลของความเค็มต่อการเจริญและปริมาณบีเทนของไซยาโนแบคทีเรียชนิดเส้นสาย Anabaena sp. Nostoc sp. และ Spirulina sp. วารสารหน่วยวิจัยวิทยาศาสตร์ เทคโนโลยี และสิ่งแวดล้อมเพื่อการเรียนรู้, 3(2), 110 – 115.

วิชิตพล มีแก้ว, ณัฐพล ขันธปราบ, และสุรศักดิ์ ละลอกน้ำ. (2553). การปรับตัวของพืชภายใต้ภาวะที่มีความเค็ม. กาวทันโลกวิทยาศาสตร์, 10(2), 28 – 37.

สุรศักดิ์ ละลอกน้ำ. (2554). การปรับตัวของไซยาโนแบคทีเรียภายใตภาวะเครียดจากเกลือ. วารสารหน่วยวิจัยวิทยาศาสตร์ เทคโนโลยี และสิ่งแวดลอมเพื่อการเรียนรู้, 2(1), 82–88.

สุรศักดิ์ ละลอกน้ำ, วรัญญา แก้วคำ, สาลินี เต็งน้อย, ทรงกลด ใบยา, อาภรณ์ บัวหลวง, และบงกช บุญบูรพงศ์. (2565). ผลของความเครียดจากเกลือและออสโมติกต่อลักษณะสัณฐานของแบบจำลองเซลล์ของพืช. ใน รายงานสืบเนื่องจากการประชุมวิชาการระดับชาติด้านวิทยาศาสตร์ เทคโนโลยี และนวัตกรรม ครั้งที่ 4 ประจำปี 2565 “วิทยาศาสตร์และเทคโนโลยี สร้างสรรค์นวัตกรรมเพื่อชุมชน” (หน้า 118 – 127). เลย: คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเลย.

Ali, A., Ali, Q., Iqbal, M. S., Nasir, I. A., and Wang, X. (2020). Salt Tolerance of Potato Genetically Engineered with the Atriplex canescens BADH Gene. Biologia Plantarum, 64, 271–279.

Eraslan, F., Inal, A., Gunes, A., and Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113, 120–128.

Flowers, T. J., Munns, R., and Colmer, T. D. (2015). Sodium Chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 115, 419–431.

Gibberd, M. R., Turner, N. C., and Storey, R. (2002). Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.). Annals of Botany, 90, 715–724.

Han, K. H., and Hwang, C. H. (2003). Salt tolerance enhanced by transformation of a P5CS gene in carrot. Journal of Plant Biotechnology, 5 (3), 157–161.

Heuer, B. (2003). Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science, 165, 693–699.

Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savoure, and A., Jaoua, S. (2005). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 169 (4), 746–752.

Jaarsma, R., de Vries. R. S. M., and de Boer, A. H. (2013). Effect of Salt Stress on Growth, Na+ Accumulation and Proline Metabolism in Potato (Solanum tuberosum) Cultivars. PLoS ONE, 8, e60183.

Jungklang, J. (2018). Effects of sodium chloride on germination, growth, relative water content, and chlorophyll, proline, malondialdehyde and vitamin C contents in Chinese white radish seedlings (Raphanus sativus L. var. longipinnatus Bailey). Maejo International Journal of Science and Technology, 12(02), 89-100.

Kapper, R. M., Kempf, B., and Bremer, F. (1996). Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. Journal of Bacteriology, 178, 5071- 5079.

Kilani, B. R., Abdelly, C., and Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278-284.

Kumar, S., Dhingra, A., and Daniell, H. (2004). Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Journal of Plant Physiology, 36, 2843–2854.

Laloknam, S., Tanaka, K., Buaboocha, T., Waditee, R., Incharoensakdi, A., Hibino, T., … Takabe, T. (2006). Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Applied and Environmental Microbiology Journal, 72(9), 6018- 6026.

Laloknam, S., Kanchitanurak, P., Boonburapong, B., Rai, V., and Kongvitthaya, S. (2014). Inorganic and Organic Compounds of Freshwater Filamentous Cyanobacteria under Normal and Salt Stress Conditions. Journal of Chemistry and Chemical Engineering, 8, 1059-1067.

Li, Y. Z., Zhao, J. Y., Wu, S. M., Fan, X. W., Luo, X. L., and Chen, B. S. (2016). Characters related to higher starch accumulation in cassava storage roots. Scientific Reports, 6, 19823.

Liu, D., He, S., Zhai, H., Wang, L., Zhao, Y., Wang, B. … Liu, Q. (2014). Overexpression of IbP5CR enhances salt tolerance in transgenic sweet potato. Plant Cell, Tissue and Organ Culture, 117(1), 1–16.

Nagaz, K. Masmoudi, M. M., and Ben, M.N. (2012). Impacts of irrigation regimes with saline water on carrot productivity and soil salinity. Journal of the Saudi Society of Agricultural Sciences, 11, 19–27.

Padan, E., and Schuldiner, S. (1996). Bacterial Na+ /H+ antiporters: molecular biology, biochemistry, and physiology. In W. N. Konings, H. R. Kaback, and J. S. Lolkema (Eds.), Handbook of Biological Physics (pp. 501-531). Amsterdam, Netherlands: Elsevier Science,.

Raigond, P., Atkinson, F. S., Lal, M. K., Thakur, N., Singh, B., and Mishra, T. (2020). Potato Carbohydrates. In Raigond, P., Singh, B., Dutt, S., and Chakrabarti, S. (Eds.), Potato (pp. 13–36). Singapore: Springer.

Roy, S. J., Negrao, S., and Teste,R M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124.

Sabagh, E. L., Sorour, S., Ragab, A., Saneoka, H., and Islam, M. (2017). The effect of exogenous application of proline and glycine betaine on the nodule activity of soybean under saline condition. Journal of Agricultural Biotechnology, 2, 1–5.

Smolen, S., Lukasiewicz, A., Chodacka, M. K., and Baranski, R. (2020). Effect of Soil Salinity and Foliar Application of Jasmonic Acid on Mineral Balance of Carrot Plants Tolerant and Sensitive to Salt Stress. Agronomy, 10(5), 659.

Sobahan, M. A., Akter, N., Ohno, M., Okuma, E., Hirai, Y., Mori, I. C. … Murata, Y. (2012). Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. Bioscience, Biotechnology, and Biochemistry, 76, 1568–1570.

Umar, J., Aliyu, A., Shehu, K., and Abubakar, L. (2018). Influence of Salt Stress on Proline and Glycine Betaine Accumulation in Tomato (Solanum lycopersicum L.). Journal of Horticulture and Plant Research, 1,

-25.

VishnuPriya, S., Elavarasan, R., and SelvanKumar, T. (2020). Studies on Radish salinity tolerance and their growth response analysis. International Journal of Advanced Research in Biological Sciences, 7(5), 30-39.

Waditee, R., Hibino, T., Tanaka, Y., Nakamura, T., Incharoensakdi, A., and Takabe, T. (2001). Halotolerant cyanobacterium Aphanothece halophytica contains an Na+ /H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by c-terminal tail. Journal of Biological Chemistry, 276, 36931-36938.

Waditee, R., Hibino, T., Nakamura, T., Incharoensakdi, A., and Takabe, T. (2002). Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proceedings of the National Academy of Sciences, 99, 4109-4114.

Waditee, R., Bhuiyan, M. N. H., Rai, V., Aoki, K., Tanaka, Y., Hibino, T. … Takabe, T. (2005). Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proceedings of the National Academy of Sciences, 102, 1318-1323.

Wu, G. Q., Liang, N., Feng, R. J., and Zhang, J. J. (2013). Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. Acta Physiologiae Plantarum, 35, 2665-2674.

Downloads

Published

2023-06-26

Issue

Section

Research Articles