Rubik’s Magic Square Number

Authors

  • Tippawan Puttasontiphot Department of Computational Science and Digital Technology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus
  • Sirawich Kaewkead Department of Computational Science and Digital Technology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus
  • Phanuphong Aiemwongsa Department of Computational Science and Digital Technology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus
  • Sasithorn Udpin Department of Computational Science and Digital Technology, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus

Keywords:

Rubik’s Cube, Magic Square, Mathematical Game, Gaussian Elimination, Educational Innovation

Abstract

This study aims to develop a prototype 3×3 Rubik’s Cube that incorporates the mathematical concept of magic squares in place of traditional colored faces. Each face of the cube is designed to display a unique magic square with distinct magic constants: 12, 21, 30, 39, 48, and 57. Although the cube retains the standard rotational mechanics of a conventional Rubik’s Cube, players must apply mathematical reasoning and logical thinking to arrange the numbers correctly according to the magic square rules. The Magic Rubik serves as an innovative educational tool that enhances analytical thinking, problem-solving, and mathematical skills.

References

สุรัตนา สังข์หนุน. (2560). พีชคณิตเชิงเส้นเบื้องต้น. กองส่งเสริมวิชาการ มจพ. คณะวิทยาศาสตร์ประยุกต์.

Andrews, W.S. (1960). Magic Squares and Cubes, Dover, New York.

Cammann, S. (1960). The Evolution of Magic Squares in China. Journal of the American Oriental Society, 80(2), 116-124. https://doi.org/10.2307/595587

Emanuele, D. (2009). Handout I: Construction of Magic Squares. https://people.math.binghamton.edu/zaslav/Oldcourses/386.F10/delucchi.magic-squares.pdf?utm_source=chatgpt.com

Michael, T. (2007). The Mathematics of The Rubik’s Cube, Chicago. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2007/REUPapers/FINALAPP/Travis.pdf

Pringle, T. (2024). Magic Squares and Using Magic Series for Theory. https://cklixx.people.wm.edu/teaching/math400/Tyler.pdf?utm_source=chatgpt.com

Tomba, I. (2012). A Technique for Constructing Even-order Magic Squares using Basic Latin Squares. International Journal of Scientific and Research Publications, 2(7), 1-10. https://www.ijsrp.org/research_paper_jul2012/ijsrp-july-2012-103.pdf

Downloads

Published

2025-12-25

Issue

Section

บทความวิจัย