Autotrophic production of bio-functional proteins from freshwater microalgae using natural water medium for an economical and ecofriendly approach

Main Article Content

David D-W. Tsai
Rameshprabu Ramaraj
Yuwalee Unpaprom
Prakash Bhuyar
Rajeswaran Ramaraj
Paris Honglay Chen

Abstract




As natural repositories of a broad spectrum of bioactive compounds ranging from pigments and enzymes to unique fatty acids and proteins, microalgae have attracted growing interest for their potential to produce bio-functional proteins. This comprehensive study examines the autotrophic cultivation of freshwater microalgae, focusing on protein production using a photobioreactor and natural water as the growth medium. The cultivation strategy eliminated the need for supplemented nutrients, enhancing environmental sustainability and cost- effectiveness. The study achieved a biomass production rate of 0.262 mg/L/day and a notable protein yield of 27.69 mg/L/day. Our findings support the feasibility and efficacy of employing natural water as a cultivation medium for freshwater microalgae for protein production. This approach alleviates the environmental burden associated with synthetic growth media and contributes to reducing operational costs. The study thus demonstrates the potential for this methodology to pave the way for a new, eco-friendly, and economically sustainable paradigm in the production of algal bio-functional proteins. Moreover, the widespread availability of natural resources makes this approach highly adaptable and scalable for larger production systems.




Article Details

How to Cite
David D-W. Tsai, Rameshprabu Ramaraj, Yuwalee Unpaprom, Prakash Bhuyar, Rajeswaran Ramaraj, & Paris Honglay Chen. (2023). Autotrophic production of bio-functional proteins from freshwater microalgae using natural water medium for an economical and ecofriendly approach. Maejo International Journal of Energy and Environmental Communication, 5(2), 29–34. https://doi.org/10.54279/mijeec.v5i2.250835
Section
Research Article

References

APHA, AWWA, WEF., (2005). Standard methods for the examination of water and wastewater. 21st ed. Washington DC: American Public Health Association/American Water Works Association/Water Environment Federation.

Baird, M. E., & Middleton, J. H. (2004). On relating physical limits to the carbon: nitrogen ratio of unicellular algae and benthic plants. Journal of Marine Systems, 49(1-4), 169-175.

Barthel, L., Oliveira, P. A. V. D., & Costa, R. H. R. D. (2008). Plankton biomass in secondary ponds treating piggery waste. Brazilian archives of biology and technology, 51, 1287-1298.

Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210.

Bhuyar, P., Rahim, M. H. A., Maniam, G. P., Ramaraj, R., & Govindan, N. (2020). Exploration of bioactive compounds and antibacterial activity of marine blue-green microalgae (Oscillatoria sp.) isolated from coastal region of west Malaysia. SN Applied Sciences, 2, 1-10.

Bhuyar, P., Trejo, M., Dussadee, N., Unpaprom, Y., Ramaraj, R., & Whangchai, K. (2021). Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Science and Technology, 84(10-11), 2686-2694.

García, J., Green, B. F., Lundquist, T., Mujeriego, R., Hernández-Mariné, M., & Oswald, W. J. (2006). Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresource Technology, 97(14), 1709-1715.

Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Mancini Filho, J., Torres, R. P., & Pinto, E. (2010). Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chemistry, 120(2), 585-590.

Hernández-Carmona, G., Carrillo-Domínguez, S., Arvizu-Higuera, D. L., Rodríguez-Montesinos, Y. E., Murillo-Álvarez, J. I., Muñoz-Ochoa, M., & Castillo-Domínguez, R. M. (2009). Monthly variation in the chemical composition of Eisenia arborea JE Areschoug. Journal of Applied Phycology, 21, 607-616.

Hodaifa, G., Sánchez, S., Martínez, M. E., & Órpez, R. (2013). Biomass production of Scenedesmus obliquus from mixtures of urban and olive-oil mill wastewaters used as culture medium. Applied Energy, 104, 345-352.

Hunt, R. W., Chinnasamy, S., Bhatnagar, A., & Das, K. C. (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 162, 2400-2414.

Lam, M. K., & Lee, K. T. (2012). Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy, 94, 303-308.

Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289-295.

Manmai, N., Balakrishnan, D., Obey, G., Ito, N., Ramaraj, R., Unpaprom, Y., & Velu, G. (2022). Alkali pretreatment method of dairy wastewater based grown Arthrospira platensis for enzymatic degradation and bioethanol production. Fuel, 330, 125534.

Nithin, B. R., Bhuyar, P., Trejo, M., Rahim, M. H. A., Maniam, G. P., & Govindan, N. (2020). Culturing of green photosynthetic microalgae (Chlorella sp.) using palm oil mill effluent (POME) for future biodiesel production. Maejo International Journal of Energy and Environmental Communication, 2(1), 1-8.

Palanisamy, K. M., Bhat, O. A., Oteikwu, M. O., Govindan, N., Maniam, G. P., Ramaraj, R., & Unpaprom, Y. (2022). Production of biofuel from microalgae grown in wastewater-A review: Microalgae. Maejo International Journal of Energy and Environmental Communication, 4(3), 16-26.

Patel, A., Krikigianni, E., Rova, U., Christakopoulos, P., & Matsakas, L. (2022). Bioprocessing of volatile fatty acids by oleaginous freshwater microalgae and their potential for biofuel and protein production. Chemical Engineering Journal, 438, 135529.

Phukan, M. M., Chutia, R. S., Konwar, B. K., & Kataki, R. (2011). Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88(10), 3307-3312.

Ramaraj, R., Tsai, D. D., & Chen, P. H. (2013). Chlorophyll is not accurate measurement for algal biomass. Chiang Mai Journal of Science, 40(4), 547-555.

Ramaraj, R., & Dussadee, N. (2015). Biological purification processes for biogas using algae cultures: a review. International Journal of Sustainable and Green Energy, 4(1), 20-32.

Ramaraj, R., Tsai, D. D. W., & Chen, P. H. (2015). Carbon dioxide fixation of freshwater microalgae growth on natural water medium. Ecological Engineering, 75, 86-92.

Ramaraj, R., Unpaprom, Y., & Dussadee, N. (2016a). Cultivation of green microalga, Chlorella vulgaris for biogas purification. International Journal of New Technology and Research, 2(3), 117-122.

Ramaraj, R., Unpaprom, Y., & Dussadee, N. (2016b). Potential evaluation of biogas production and upgrading through algae. International Journal of New Technology and Research, 2(3), 263567.

Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society.

Redfield, A. C., Ketchum, B. H., & Richards, F. A. (1963). The influence of organisms on the composition of seawater. The Sea, 2, 26-77.

Saetang, N., & Tipnee, S. (2021). Towards a sustainable approach for the development of biodiesel microalgae, Closterium sp. Maejo International Journal of Energy and Environmental Communication, 3(1), 25-29.

Sousa, I., Gouveia, L., Batista, A. P., Raymundo, A., & Bandarra, N. M. (2008). Microalgae in novel food products. Food Chemistry Research Developments, 75-112.

Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.

Tsai, D. D. W., Ramaraj, R., & Chen, P. H. (2012). Growth condition study of algae function in ecosystem for CO2 bio-fixation. Journal of Photochemistry and Photobiology B: Biology, 107, 27-34.

Tsai, D. D. W., Chen, P. H., Chou, C. M. J., Hsu, C. F., & Ramaraj, R. (2015). Carbon sequestration by alga ecosystems. Ecological Engineering, 84, 386-389.

Tsai, D. D. W., Chen, P. H., & Ramaraj, R. (2017). The potential of carbon dioxide capture and sequestration with algae. Ecological Engineering, 98, 17-23.

Unpaprom, Y., Tipnee, S., & Ramaraj, R. (2015). Biodiesel from green alga Scenedesmus acuminatus. International Journal of Sustainable and Green Energy, 4(1), 1-6.

Unpaprom, Y., Ramaraj, R., & Whangchai, K. (2017). A newly isolated green alga, Scenedesmus acuminatus, from Thailand with efficient hydrogen production. Chiang Mai Journal of Science, 44, 1270-1278.