Climate change: Consequences for neglecting the early warnings a brief testimony

Main Article Content

Rihashni Thivagaran
Nurul Huda Abu Bakar
Karthick Murugan Palanisamy
Prakash Bhuyar
Natanamurugaraj Govindan
Mohd Hasbi Ab. Rahim
Gaanty pragas Maniam

Abstract

To a great extent reversing the effects of climate change is almost unfeasible. The impact has grown to a near-final stage. The results certainly cost a lot to human beings. Humans undoubtedly initiated the current deteriorating state through their activities to achieve the so-called 'development'. On the other hand, the deterioration effects have not happened in one day but at a relatively slower pace with numerous indications (rise in temperature, sea level, CO2, land disappearing, unpredictable sudden weather changes) that have been missed or neglected. The most that can be done now is to reduce the deterioration rate, which is only possible with collective efforts from all nations, especially the top-emitting countries. Simultaneously, people must adapt to the ever-changing climate and its consequences by devoting themselves to early warning systems. This report highlights those early indications (warnings) and the effects by neglecting those warnings and suggesting adaptation by focusing on early climate information.

Article Details

How to Cite
Rihashni Thivagaran, Abu Bakar, N. H. ., Karthick Murugan Palanisamy, Bhuyar, P., Natanamurugaraj Govindan, Ab. Rahim, M. H., & Maniam, G. pragas. (2023). Climate change: Consequences for neglecting the early warnings a brief testimony . Maejo International Journal of Energy and Environmental Communication, 5(2), 55–63. https://doi.org/10.54279/mijeec.v5i2.250850
Section
Review Article

References

Alves, B. (2023). Global flood economic losses 2021, by type. https://www.statista.com/statistics/1326526/economic-losses-floods-worldwide-by-type/#:~:text=Global%20flood%20economic%20losses%202021%2C%20by%20type&text=In%202021%2C%20economic%20losses%20caused,total%2C%20at%2020%20billion%20dollars .

Amoura, R., & Dahmani, K., (2022), Visualization of the spatial extent of flooding expected in the coastal area of Algiers due to sea level rise. Horizon 2030/2100, Ocean Coastal Management, 219, 106041.

Aouissi, K.B., (2019). Alger; Prospection D’une Reconversion Portuaire Compar´ee. thesis, 1. Ferhat Abbas university Setif, p. 283.

Arruda, D., Candido, H. G., & Fonseca, R. (2019), Amazon fires threaten Brazil's agribusiness, Science, 365(6460), 1387-1387.

Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R., (2011), The value of estuarine and coastal ecosystem services. Ecology monographs, 81(2), 169-193.

Barrett, C.B., Carter, M., Chavas, J.-P. Carter, M.R. (2019). The Economics of Poverty Traps (University of Chicago Press, 2019).

Birdsey, R.A. (1992). Carbon storage and accumulation in United States forest ecosystems, US Department of Agriculture, Forest Service, Washington Office, 51p.

Bragagnolo, L., da Silva, R.V., & Grzybowski, J.M.V. (2021), Towards the automatic monitoring of deforestation in Brazilian rainforest. Ecological informatics, 66, 101454.

Burrell, A.L., Evans, J.P. & De Kauwe, M.G. (2020), Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification, Nature communications, 11, 3853.

Cabral, P., Augusto, G., Akande, A., Costa, A., Amade, N., & Niquisse, S. (2017). Assessing Mozambique's exposure to coastal climate hazards and erosion. International Journal of Disaster Risk Reduction, 23, 45–52.

Carrillo-Niquete, G. A., Andrade, J. L., Valdez-Lazalde, J. R., Reyes-García, C., & Hernández-Stefanoni, J. L. (2022) Characterizing spatial and temporal deforestation and its effects on surface urban heat islands in a tropical city using Landsat time series, Landscape and Urban Planning, 217, 104280.

Climate Change (2014), Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Climate change and land, 2019. https://royalsociety.org/-/media/policy/projects/climate-change/IPCC-special-report-briefing-climate-change-and-land.pdf.

Cunha J, Cardona, F.S., Bio, A., & Ramos, S. (2021), Importance of Protection Service Against Erosion and Storm Events Provided by Coastal Ecosystems Under Climate Change Scenarios, Frontiers in Marine Science, 8:726145. doi: 10.3389/fmars.2021.726145

Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marb,à, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation, Nature Climate Change, 3, 961–968.

Emery, A.R., Hodgson, D.M., Barlow, N.L.M., Carrivick, J.L., Cotterill, C.J., Mellett, C.L., & Booth, A.D. (2019). Topographic and hydrodynamic controls on barrier retreat and preservation: an example from Dogger Bank, North Sea Marine Geology, 416.

EPA, (2020), https://www.epa.gov/arc-x/climate-adaptation-and-saltwater-intrusion

EPA. (2022). https://www.epa.gov/climate-indicators/snow-ice EPI, Energy Policy Institute, 2022.

FAO and UNEP. (2020), The State of the World's Forests 2020. Forests, biodiversity and people. Rome. https://doi.org/10.4060/ca8642en

FAO-FRA. (2001), Global Forest Resources Assessment 2020: Main Report.

Gautier, E., Dépret, T., Cavero, J. Costard, F., Virmoux, C., Fedorov, A., Konstantinov, P., Jammet, M., Brunstein, D. (2021), Fifty-year dynamics of the Lena River islands (Russia): Spatio-temporal pattern of large periglacial anabranching river and influence of climate change, Science of The Total Environment, 783,147020.

Gaveau, D.L., Santos, L., Locatelli, B., Salim, M.A., Husnayaen, H., Meijaard, E., & Sheil, D. (202),. Forest loss in Indonesian New Guinea (2001–2019): Trends, drivers and outlook, Biological Conservation, 261, 109225.

Glantz, M., (2004). Early Warning Systems: Do׳s and Don׳ts. Workshop Report, 20–23 October 2003, Shanghai, China. 〈www.esig.ucar.edu/warning〉

Hamlet, A.F., Lettenmaier, D.P. 2007. Effects of 20th-century warming and climate variability on flood risk in the western US, Water Resources Research, 43(6).

Hinkel, J., Aerts, J.C. Brown, J.H., Jim´enez, S., Lincke, J.A., Nicholls, D., Scussolini, R.J., Sanchez-Arcilla, P., Vafeidis, A., Addo, K.A., (2018). The ability of societies to adapt to twenty-first-century sea-level rise, Nature Climate Change, 8, 570-578. http://www.earth-policy.org/indicators/c51/temperature_2014.

IPCC, (2014), Summary for policymakers. In: Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E.

Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, & L.L.White (eds.).

Climate Change (2014), Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1-32.

Jackson, N. L., & Nordstrom, K. F. (2018). Aeolian sediment transport on a recovering storm-eroded foredune with sand fences. Earth Surface Processes and Landforms, 43, 1310–1320. doi: 10.1002/esp.4315

Jothityangkoon, C., Hirunteeyakul, C., Boonrawd, K., Sivapalan, M. (2013). Assessing the act of climate and land use changes on extreme floods in a large tropical catchment. Journal of Hydrology, 490, 88-105.

Kuhn, M., Tuladhar, D., Corner, R., (2011). Visualizing the spatial extent of predicted coastal zone inundation due to sea level rise in south-west Western Australia, Ocean & Coastal Management, 54, 796–806.

Kulp, S.A. Strauss, B.H., 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nature Communications https://doi.org/10.1038/s41467-019-12808-z.

Le, S-T., Gao, Y., Kibbey, T.C.G., Glamore, W.C.&, O'Carroll. DM (2021). Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS, Science of The Total Environment, 151987.

Li, Y., Liu, Y., Bohrer, G., Cai, Y., Wilson, A., Hu, T., & Zhao, K. (2022). Impacts of forest loss on local climate across the conterminous United States: Evidence from satellite time-series observations, Science of The Total Environment, 02, 149651.

Marengo, J. A. (2020). Drought, floods, climate change, and forest loss in the amazon region: a present and future danger? Frontiers for Young Minds, 7, 8-147.

Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., & Waterfield, T. (2018). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of, 1(5).

Masuda, Y.J., Garg, T., Anggraeni, I., Ebi, K., Krenz, J., Game, E.T., & Spector, J.T. (2021). Warming from tropical deforestation reduces worker productivity in rural communities. Nature Communications, 12(1), 1-8.

Mellen, R., & Neff, W. (2021). Humidity and heat extremes are on the verge of exceeding limits of human survivability, study finds. The Washington Post. https://www.washingtonpost.com/world/interactive/2021/climate-change-humidity/

Menéndez, P., Losada, I. J., Torres-Ortega, S., Narayan, S., and Beck, M. W. (2020). The global flood protection benefits of mangroves. Scientific Reports, 10, 1–11.

Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., & Trauernicht, C. (2017). Global risk of deadly heat. Nature Climate Change, 7(7), 501-506.

Muto, Y., Noda, K., Maruya, Y., Chibana, T., & Watanabe, S. (2022). Impact of climate and land-use changes on the water and sediment dynamics of the Tokoro River Basin, Japan. Environmental Advances, 7, 100153.

National Oceanic and Atmospheric Administration (NOAA) (2021), https://www.noaa.gov/

Pacheco, P., Mo, K., Dudley, N., Shapiro, A., Aguilar-Amuchastegui, N., Ling, P. Y., Marx, A. (2021). Deforestation fronts: Drivers and responses in a changing world. WWF, Gland, Switzerland.

Paprotny, D., Kreibich, H., Morales-Nápoles, O., Wagenaar, D., Castellarin, A., Carisi, F., Bertin, X., Merz, B., Schröter, K. (2021a). A probabilistic approach to estimating residential losses from different flood types, Natural Hazards. 105, 2569–2601

Paprotny, D., Terefenko, P., Giza, A., Czapliński, P., & Vousdoukas, M. I. (2021b). Future losses of ecosystem services due to coastal erosion in Europe, Science of The Total Environment, 760:144310.

Perera, D., Seidou, O., Agnihotri, J., Mehmood, H., & Rasmy, M. (2020). Challenges and technical advances in flood early warning systems (FEWSs). Flood impact mitigation and resilience enhancement.

Peterson, B.J. Peterson, R.M. Holmes, J.W. Mcclelland, C.J. Vo, R.B. Lammers, A.I. Shiklomanov, I.A. Shiklomanov, S. & Rahmstorf, (2002). Increasing river discharge to the Arctic Ocean Science, 298 (5601), 2171-2173.

Pollard, J.A., Christie, E.K., Spencer, T., & Brooks. S. M (2022). Gravel barrier resilience to future sea level rise and storms, Marine Geology, 444, 106709.

Pulwarty, R. S., & Sivakumar, M. V. (2014). Information systems in a changing climate: Early warnings and drought risk management. Weather and Climate Extremes, 3, 14-21.

Rome, I. (2020). Food and Agriculture Organization of the United Nations. Durham, USA: Duke University.

Rude, B., Niederhöfer, B., & Ferrara, F. (2021). Deforestation and migration. In CESifo Forum, München: ifo Institut-Leibniz-Institut für Wirtschaftsforschung an der Universität München.22, (01), 49-57.

Rullens, V., Mangan, S., Stephenson, F., Clark, D.E., Bulmer, R.H., Berthelsen, A., Crawshaw, J., Gladstone-Gallagher, R.V., Thomas, S., Ellis J.I., & Pilditch, C.A., (2022). Understanding the consequences of sea level rise: the ecological implications of losing intertidal habitat, New Zealand Journal of Marine and Freshwater Research, 56:3, 353-370.

Safi, A., El-fadel, M., Doummar, J., Abou Najm, M., & Alameddine, I. (2011). Synergy of climate change and local pressures on saltwater intrusion in coastal urban areas: effective adaptation for policy planning, water international, 43(2)145-164.

Sharma, A., Wasko, C., & Lettenmaier, D. P. (2018). If precipitation extremes are increasing, why aren't floods? Water Resources Research, 54(11), 8545-8551.

Sherif, M.M., & Singh, V.P. (1999). Effect of climate change on sea water intrusion in coastal aquifers, Hydrological Processes, 13(8), 1277 – 1287.

Statista,2022.https://www.statista.com/statistics/1091926/atmospheric-concentration-of-co2-historic/

Sung, W. T., Devi, I. V., & Hsiao, S. J. (2022). Early warning of impending flash flood based on AIoT. EURASIP Journal on Wireless Communications and Networking, 2022(1), 15.

Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10(1), 1-10.

Teagle, H., Hawkins, S. J., Moore, P. J., & Smale, D. A. (2017) stall marine ecosystems, Journal of Experimental Marine Biology and Ecology, 492, 81–98.

Timmerman, A., Haasnoot, M., Middelkoop, H., Bouma, T., & McEvoy, S., (2021). Ecological consequences of sea level rise and flood protection strategies in shallow coastal systems: a quick-scan barcoding approach. Ocean Coastal Management, 210, 105674.

UN Climate Action, (2022). https://www.un.org/en/climatechange/why-2022-will-matter-climate-action-0.

United Nations Framework Convention on Climate Change (UNFCCC). (2022). https://redd.unfccc.int/info-hub.html.

University of Maryland and World Resources Institute. 2022. "Global Primary Forest Loss". Accessed through Global Forest Watch on 08/02/2022 from www.globalforestwatch.org.

Valett, H.M., & Reinhold, A.M. (2022). Groundwater and Surface Water Interaction, Reference Module in Earth Systems and Environmental Sciences, https://doi.org/10.1016/B978-0-12-819166-8.00146-8.

Vousdoukas, M.I., Mentaschi, L., Hinkel, J., Ward, P.J., Mongelli, I., Ciscar, J-C., & Feyen, L. (2020). Economic motivation for raising coastal flood defenses in Europe. Nature Communications, 11, 2119.

Wagner, F.H., Sanchez, A., Aidar, M.P., Rochelle, A.L., Tarabalka, Y., Fonseca, M.G., & Aragao, L.E. (2020). Mapping Atlantic rainforest degradation and regeneration history with indicator species using convolutional network. PloS one, 15(2), e0229448.

Zedler, J. B., & Kercher, S. (2005). WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources, 30, 39–74.