Prediction model for cervical cancer by using machine learning

Main Article Content

Phakkaphon Sawatkamon
Sawita Tongkunwong

Abstract

The aim of this study is to compare predictive performance of cervical cancer prediction models using machine learning techniques, including decision trees, gradient boosted trees, random forests, and deep learning. The study collected data from Kaggle.com, comprising 110 data points, with 21 independent variables, such as age, number of sexual partners, age of first sexual intercourse, number of pregnancies, smoking per year, contraceptive pill use, year of contraceptive pill use, intrauterine device use, years of intrauterine device use, sexually transmitted infections, genital herpes, genital warts, syphilis, cervical infection, herpes simplex virus infection, rice-sized cervical polyps, AIDS, HIV infection, HPV infection, and hepatitis B virus infection. The dependent variable is binary, classifying individuals into two groups: those with cervical cancer and those without. The study results indicate that the deep learning-based cervical cancer prediction model performs with the highest predictive efficiency, achieving an accuracy rate of 95.45%.

Article Details

How to Cite
Sawatkamon, P., & Tongkunwong, S. (2024). Prediction model for cervical cancer by using machine learning . Rattanakosin Journal of Science and Technology, 6(1), 34–42. Retrieved from https://ph02.tci-thaijo.org/index.php/RJST/article/view/251845
Section
Research Articles

References

พญ.สุขุมาลย์ สว่างวารี. (2566). มะเร็งสตรี รู้ก่อน รักษาไว มีโอกาสหาย ป้องกันได้ คุณภาพชีวิตดี. https://www.chaophya.com/2023/04/มะเร็งสตรี/

Sharma, A. (2023, Sep 18). 4 Simple Ways to Split a Decision Tree in Machine Learning. https://www.analyticsvidhya.com/blog/2020/06/4-ways-split-decision-tree/

Silipo, R. (2020, Mar 19). Ensemble Models: Bagging & Boosting. https://medium.com/ analytics-vidhya/ensemble-models-bagging-boosting-c33706db0b0b.

D'Souza, J. (2018, Mar 20). A trip to Random Forest. https://medium.com/greyatom/a-trip-to-random-forest-5c30d8250d6a.

ดร.ไพรสันต์ ผดุงเวียง. (2563). สรุปเนื้อหาในหลักสูตร Data Scientist Essentials ตอนที่ 7 Introduction to deep learning. https://rdbi.co.th/2020/01/data-scientist-7/

Sarabun, K. (2020). Learning - Data Science and AI: Machine Learning with Python. Bangkok: Media Network Publisher.

Gokagglers. (2018). Cervical Cancer Risk Classification. https://www.kaggle.com/datasets/loveall/cervical-cancer-risk-classification

กอบเกียรติ สระอุบล. (2565). เรียนรู้ AI: Deep Learning ด้วย Python (พิมพ์ครั้งที่ 1). สำนักพิมพ์ อินเตอร์มีเดีย.