Modeling the Bioclimatic Range of Musa ingens (Giant Highland Banana) under Conditions of Climate Change Scenarios 10.32526/ennrj/22/20240002

Main Article Content

Septianto Aldiansyah
Risna Risna

Abstract

Climate change significantly impacts living organisms, leading to alterations in their range, distribution, and abundance. This study estimates the potential distribution of representatives of the family Musaceae, noted for their large size and importance to tropical ecosystems. We focus on Musa ingens Simmonds 1960 and employ bioclimatic variables and in situ datasets to model its species distribution. We differentiate potential distribution areas for M. ingens and present a prognostic map of its distribution under four climate change scenarios. Precipitation during the warmest quarter emerges as the primary factor influencing the spatial distribution of M. ingens. Under the RCP (Representative Concentration Pathway) 6.0 scenario, the potential distribution shows an initial decrease, followed by a significant increase by 2070. Meanwhile, the RCP 8.5 scenario indicates an increase in 2050, with a subsequent six percent decrease in 2070. Under the RCP 4.5 scenario for 2050, the species distribution shifts regionally, particularly around the Osua Trikora Mountains and the highlands of the Giluwe Mountains to Mount Victoria. By 2070, the feasible area is expected to expand. Notably, the RCP 2.6 scenario for 2070 predicts a dramatic reduction in habitable area around Mount Bintang Lestari, on the border between Indonesia and Papua New Guinea, rendering the entire lowland region of Papua uninhabitable. Consequently, a sharp decline in the population of M. ingens in this area is predicted.

Article Details

How to Cite
Aldiansyah, S., & Risna, R. (2024). Modeling the Bioclimatic Range of Musa ingens (Giant Highland Banana) under Conditions of Climate Change Scenarios: 10.32526/ennrj/22/20240002. Environment and Natural Resources Journal, 22(5), 394–407. Retrieved from https://ph02.tci-thaijo.org/index.php/ennrj/article/view/252257
Section
Original Research Articles

References

Abdoussalami A, Hu Z, Islam ARMT, Wu Z. Climate change and its impacts on banana production: A systematic analysis. Environment, Development and Sustainability 2023; 25(11):1-30.

Abdulai I, Vaast P, Hoffmann MP, Asare R, Jassogne L, Van Asten P, et al. Cocoa agroforestry is less resilient to sub‐optimal and extreme climate than cocoa in full sun. Global Change Biology 2018;24(1):273-86.

Agresti A. An Introduction to Categorical Data Analysis. Canada: John Wiley and Sons; 2018.

Aldiansyah S, Madani I. Spatial model of wildfire susceptibility using machine learning approaches on Rawa Aopa Watumohai National Park, Indonesia. GeoScape 2024; 18(1):1-20.

Aldiansyah S, Risna R. Assessing potential habitat suitability of vulnerable endemic species: A case study of Diospyros celebica Bakh and Rhyticeros cassidix. Forum Geografic 2023;22(2):159-69.

Aldiansyah S, Risna, Saputra RA. Assessing potential distributions of bird endemic species: Case studies of Macrocephalon maleo and Rhyticeros cassidix and their threats. Geomatics and Environmental Engineering 2024; 18(3):45-61.

Aldiansyah S, Wahid KA. Species distribution modelling using bioclimatic variables on endangered endemic species (Bubalus depressicornis and Bubalus quarlesi). Geosfera Indonesia 2023;8(1):1-18.

Aldiansyah S, Wahid KA. Species distribution modelling using bioclimatic variables on critically endangered endemic species (Macrocephalon maleo) in Sulawesi. ASEAN Journal on Science and Technology for Development 2024;41(3):240-53.

Aldiansyah S, Wardani F. Assessment of resampling methods on performance of landslide susceptibility predictions using machine learning in Kendari City, Indonesia. Water Practice and Technology 2024;19(1):52-81.

Aldiansyah S, Wardani F. Evaluation of flood susceptibility prediction based on a resampling method using machine learning. Journal of Water and Climate Change 2023; 14(3):937-61.

Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 2006; 3(6):1223-32.

Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Global Change Biology 2004;10(9):1618-26.

Araújo MB, Whittaker RJ, Ladle RJ, Erhard M. Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography 2005;14(6):529-38.

Argent GCG. The wild bananas of Papua New Guinea. Notes from the Royal Botanic Garden Edinburgh 1976;35(1):77-114.

Bebber DP. Climate change effects on Black Sigatoka disease of banana. Philosophical Transactions of the Royal Society B 2019;374(1775):Article No. 20180269.

Becker JN. Carbon and Nutrient Cycles Depending on Climate and Land Use along the Elevation Gradient of Mount Kilimanjaro. German: Gorg-August University School of Science; 2017.

Blaser WJ, Oppong J, Hart SP, Landolt J, Yeboah E, Six J. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nature Sustainability 2018;1(5):234-9.

Butler RA. Papua New Guinea [Internet]. 2006 [cited 2023 Jun 3]. Available from: https://rainforests.mongabay.com/20png.html.

Canadell JG, Raupach MR. Managing forests for climate change mitigation. Science 2008;320(5882):1456-7.

Casajus N, Périé C, Logan T, Lambert MC, de Blois S, Berteaux D. An objective approach to select climate scenarios when projecting species distribution under climate change. PLoS ONE 2016;11(3):e0152495.

Domec JC, Berghoff H, Way DA, Moshelion M, Palmroth S, Kets K, et al. Mechanisms for minimizing height‐related stomatal conductance declines in tall vines. Plant, Cell and Environment 2019;42(11):3121-39.

Dukes JS, Mooney HA. Does global change increase the success of biological invaders? Trends in Ecology and Evolution 1999;14(4):135-9.

Feng H, Zhang M. Global land moisture trends: Drier in dry and wetter in wet over land. Scientific Reports 2015;5(1):Article No. 18018.

Fieberg JR, Forester JD, Street GM, Johnson DH, ArchMiller AA, Matthiopoulos J. Used‐habitat calibration plots: A new procedure for validating species distribution, resource selection, and step‐selection models. Ecography 2018; 41(5):737-52.

Food and Agriculture Organization (FAO). FAOSTAT. Food and Agriculture Organization of the United Nations [Internet]. 2018 [cited 2023 Apr 21]. Available from: https://www.fao.org/home/en.

Fourcade Y, Besnard AG, Secondi J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography 2018;27(2):245-56.

Gasparrini A, Guo Y, Sera F, Vicedo-Cabrera AM, Huber V, Tong S, et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 2017;1(9):e360-7.

Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, et al. The community climate system model version 4. Journal of Climate 2011;24(19):4973-91.

Global Biodiversity Information Facility (GBIF). GBIF Occurrence Download [Internet]. 2023 [cited 2023 Apr 9]. Available from: https://doi.org/10.15468/dl.rcqwuv.

Greve P, Seneviratne SI. Assessment of future changes in water availability and aridity. Geophysical Research Letters 2015; 42(13):5493-9.

Gunina A, Nico Becker J, Hemp A, Yu L, Jones DL, Kuzyakov Y. Determining the optimal temperature and precipitation for microbial community development in montane forest ecosystems: PLFA analysis along a 3,500 m altitudinal gradient on Mt Kilimanjaro. Proceedings of the EGU General Assembly Conference Abstracts; 2018 April 8-13; Vienna: Austria; 2018.

Hirzel AH, Hausser J, Chessel D, Perrin N. Ecological‐niche factor analysis: How to compute habitat‐suitability maps without absence data? Ecology 2002;83(7):2027-36.

Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling 2006;199(2):142-52.

Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press; 2013. p. 1217.

Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014 Synthesis Report Fifth Assessment Report [Internet]. 2014 [cited 2024 Jun 1]. Available from: https://ar5-syr.ipcc.ch/topic_futurechanges.php.

Joshi RU, Singh AK, Singh VP, Rai R, Joshi P. A review on adaptation of banana (Musa spp.) to cold in subtropics. Plant Breeding 2023;142(3):269-83.

Kallow S, Longin K, Sleziak NF, Janssens SB, Vandelook F, Dickie J, et al. Challenges for ex situ conservation of wild bananas: Seeds collected in Papua New Guinea have variable levels of desiccation tolerance. Plants 2020;9(9):Article No. 1243.

Kennedy J. Bananas and people in the homeland of genus Musa: not just pretty fruit. Ethonobotany Research and Applications 2009;7:179-98.

Knutti R, Sedláček J. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change 2013;3(4):369-73.

Kohonen T. Learning Vector Quantization: Self-Organizing Maps. Berlin: Springer; 1995.

Lawton JH. Range, population abundance and conservation. Trends in Ecology and Evolution 1993;8(11):409-13.

Lee JW, Hong SY, Chang EC, Suh MS, Kang HS. Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Climate Dynamics 2014; 42:733-47.

Lee JY, Marotzke J, Bala G, Cao L, Corti S, Dunne JP, et al. Future Global Climate: Scenario-based Projections and Near-term Information. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press; 2021. p. 553-672.

Lentfer C. Tracing domestication and cultivation of bananas from phytoliths: An update from Papua New Guinea. Ethnobotany Research and Applications 2009;7:247-70.

Lott JE, Ong CK, Black CR. Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya. Agricultural and Forest Meteorology 2009;149(6-7):1140-51.

McSweeney CF, Jones RG. No consensus on consensus: The challenge of finding a universal approach to measuring and mapping ensemble consistency in GCM projections. Climatic Change 2013;119:617-29.

Meisner A, Snoek BL, Nesme J, Dent E, Jacquiod S, Classen AT, et al. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. The ISME Journal 2021; 15(4):1207-21.

Mongabay. Deforestation statistics for Papua New Guinea [Internet]. 2019 [cited 14 Jul 2023]. Available from: https://rainforests.mongabay.com/deforestation/archive/Papua_New_Guinea.htm.

Naimi B, Araújo MB. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 2016;39(4):368-75.

Nyombi K. Understanding Growth of East Africa Highland Banana: Experiments and Simulation [dissertation]. Wageningen University, Wageningen; 2010.

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 2001; 51:933-8.

Pabst H, Gerschlauer F, Kiese R, Kuzyakov Y. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania. Land Degradation and Development 2016;27(3):592-602.

Pacific-Australia Climate Change Science Adaptation Planning (PACCSAP). Pacific-Australia Climate Change Science and Adaptation Planning Program: Current and future climate of Papua New Guinea. Papua New Guinea [Internet]. 2011 [cited 2024 Jun 2]. Available from: https://www.pacificclimatechangescience.org/wpcontent/uploads/2013/06/14_PACCSAPPNG-11pp_WEB.pdf.

Phillips ND, Reid N, Thys T, Harrod C, Payne NL, Morgan CA, et al. Applying species distribution modelling to a data poor, pelagic fish complex: The ocean sunfishes. Journal of Biogeography 2017;44(10):2176-87.

Platts PJ, Omeny P, Marchant R. AFRICLIM: High-resolution climate projections for ecological applications in Africa. African Journal of Ecology 2015;53(1):103-8.

Plummer J, Kallow S, Janssens S. The IUCN Red List of Threatened Species, Musa ingens, Giant Highland Banana [Internet]. 2020 [cited 2023 Dec 26]. Available from: https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS. T158541237A201905546.en.

Pourghasemi HR, Kerle N. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environmental Earth Sciences 2016;75(185):1-17.

Quillfeldt P, Engler JO, Silk JR, Phillips RA. Influence of device accuracy and choice of algorithm for species distribution modelling of seabirds: A case study using black‐browed albatrosses. Journal of Avian Biology 2017;48(12):1549-55.

Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, et al. Recent climate observations compared to projections. Science 2007;316(5825):Article No. 709.

Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F. Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. Natural Hazards 2016;82:1231-58.

Rahn E, Vaast P, Läderach P, Van Asten P, Jassogne L, Ghazoul J. Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecological Modelling 2018;371:76-89.

Ramirez J, Jarvis A, Van den Bergh I, Staver C, Turner D. Changing climates: Effects on growing conditions for banana and plantain (Musa spp.) and possible responses. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE, editors. Crop Adaptation to Climate Change. John Wiley and Sons, Ltd.; 2011. p. 426-38.

Ravi I, Vaganan MM. Abiotic stress tolerance in banana. In: Abiotic Stress Physiology of Horticultural Crops. New Delhi: Springer India; 2016.

RStudio Team. RStudio: Integrated Development for R [Internet]. 2020 [cited 2023 Jun 9]. Available from: http://www.rstudio.com/.

Ruosteenoja K, Jylhä K, Kämäräinen M. Climate projections for Finland under the RCP forcing scenarios. Geophysica 2016;51(1):17-50.

Sadsoeitoeboen M, Sianipar FR, Lefaan PT, Kilmaskossu JP, Loupatty JI, Dimara KA, et al. Variation and distribution of bananas in the Arfak Mountains. Jurnal Natural 2021;17(2):175-83 (in Bahasa).

Serdeczny O, Adams S, Baarsch F, Coumou D, Robinson A, Hare W, et al. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Regional Environmental Change 2017;17:1585-600.

Shabani F, Kumar L, Ahmadi M. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution 2016;6(16):5973-86.

Simmonds NW. Notes on banana taxonomy. Kew Bulletin 1960;14(2):198-212.

Simmonds NW. Where our bananas come from. New Scientist 1962;16(307):36-9.

Siyum ZG. Tropical dry forest dynamics in the context of climate change: Syntheses of drivers, gaps, and management perspectives. Ecological Processes 2020;9(1):Article No. 25.

Sterly J. Simbu Plant Lore: Plants used by the people in the central highlands of New Guinea. Berlin: Dietrich Reimer Verlag; 1997.

Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment 2018;615:438-51.

Thiele HU. Carabid Beetles in Their Environments. Berlin: Springer-Verlag; 1977.

Thuiller W, Brotons L, Araújo MB, Lavorel S. Effects of restricting environmental range of data to project current and future species distributions. Ecography 2004;27(2):165-72.

Turner DW, Fortescue JA, Thomas DS. Environmental physiology of the bananas (Musa spp.). Brazilian Journal of Plant Physiology 2007;19(4):463-84.

Watts M, Mpanda M, Hemp A, Peh KSH. The potential impact of future climate change on the production of a major food and cash crop in tropical (sub) montane homegardens. Science of the Total Environment 2023;865:Article No. 161263.

World Checklist of Selected Plant Families (WCSP). World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens [Internet]. 2018 [cited 2024 Jun 1]. Available from: http://wcsp.science.kew.org.

World Meteorological Organization (WMO). Guidelines on the Calculation of Climate Normals [Internet]. 2017 [cited 2024 Jun 1]. Available from: https://library.wmo.int/records/item/ 55797-wmo-guidelines-on-the-calculation-of-climate-.

World Wide Fund for Nature (WWF). Southeastern Asia: Extends across central New Guinea [Internet]. 2019 [cited 2023 Jun 22]. Available from: https://www.worldwildlife.org/ ecoregions/aa0105.