Microstructure and Hardness of Porous Aluminum Fabricated through Powder Metallurgy Route using NaCl as Space Holder

Main Article Content

Sunisa Khamsuk
Rosemarin Sukhasem
Chantra Nakvachiratrakul
Kanitha Narinnok
Paweena Wichian
Keerati Komjai

Abstract

Porous aluminums were fabricated by powder metallurgy using sodium choline (NaCl) as space holder agent. In order to produce porous aluminum, NaCl powders were mixed with aluminum powders at various amounts in the range of 10 – 60 %wt. Mixed powders were compacted at a constant pressure of 400 MPa and subsequently sintered at 650 ºC for 1 hr. Microstructure and hardness of porous aluminum were characterized by scanning electron microscope and hardness tester, respectively. The results showed that the evolution of microstructure and hardness of porous aluminum were strongly affected by amount of NaCl. The porosities increased with increasing the contents of NaCl. Meanwhile the hardness decreased with increasing the amount of NaCl. Shape of pore looked like NaCl geometry and the distribution of pore was relatively homogenous. Porous aluminum with having high porosity of 61.54 % was successfully produced in this study.

Downloads

Download data is not yet available.

Article Details

How to Cite
Khamsuk, S., Sukhasem, R., Nakvachiratrakul, C., Narinnok, K., Wichian, P., & Komjai, K. (2017). Microstructure and Hardness of Porous Aluminum Fabricated through Powder Metallurgy Route using NaCl as Space Holder. Thai Industrial Engineering Network Journal, 3(2), 1–6. Retrieved from https://ph02.tci-thaijo.org/index.php/ienj/article/view/178848
Section
Research and Review Article

References

[1] นภิสพร มีมงคล, โลหกรรมวัสดุผง, มหาวิทยาลัยสงขลานครินทร์, พิมพ์ครั้งที่ 1, 2548
[2] มนัส สถิรจินดา, โลหะนอกกลุ่มเหล็ก, กรุงเทพมหานคร: สานักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, 2541
[3] สถาบันเหล็กและเหล็กกล้าแห่งประเทศไทย, การสำรวจสถานภาพอุตสาหกรรมโลหะนอกกลุ่มเหล็ก (Non-
ferrous metals): อะลูมิเนียม ภายใต้โครงการพัฒนาศูนย์ข้อมูลเชิงลึกอุตสาหกรรมเหล็กและโลหการประจาปี
งบประมาณ 2557, 2557.
[4] Mccullough K.Y.G., Fleck N.A. and Ashby M.F. (1999) Uniaxial stress-strain behavior of aluminum alloy foams, Acta mater, Vol. 47, p. 2323±2330.
[5] Bin J., Zejun W. and Naiqin Z. (2007) Effect of pore size and relative density on the mechanical properties of open cell aluminum foams, Scripta Materialia, Vol. 56, p. 169–172
[6] Campus J.M. (2000), Met. Powder: A Global survey of production, All. And markets, Metal Powder Industries Federation
[7] Srivastava V.C. and Sahoo K.L. (2007) Processing, stabilization and applications of metallic foams, Materials Science-Poland, p. 733–753
[8] Hasan B. and Ali H. (2010) Production of aluminum foam by spherical carbamide space holder technique-processing parameters, Materials and Design, p.4122–4129
[9] Liu X.J., Huai Z., Lu Y., C.P. (2012) Wang, Microstructure and mechanical behavior of Ni–Cu–Fe–Si porous alloys, Materials Science and Engineering: A 545, P. 111–117
[10] Hussain Z. and Suffin N. S. A., (2011) Microstructure and Mechanical Behaviour of Aluminium Foam Produced by Sintering Dissolution Process Using NaCl Space Holder, Journal of Engineering Science, P. 37–49
[11] Torres Y., Pavón J.J., Rodríguez J.A. (2011) Processing and characterization of Porous titanium for implants by using NaCl as Space holder, Journal of Materials Processing Technology , P. 1061–1069
[12] Michailidis, N. & Stergioudi, F., (2011) Establishment of process parameters for producing Al-foam by dissolution and powder sintering method. Mater. Des., 32(3), p. 1559–1564
[13] Bafti, H. & Habibolahzadeh, A. (2010). Production of aluminum foam by spherical carbamide space holder technique-processing parameters. Mater. Des., p. 4122–4129