Development of a Webcam-Based Program for Forearm Physical Therapy
Main Article Content
Abstract
The increasing number of stroke patients worldwide has highlighted the urgent need for accessible and effective rehabilitation solutions [1-2]. This research presents the development of a webcam-based physical therapy program aimed at supporting forearm rehabilitation for stroke patients. The system utilizes the MediaPipe framework to detect key anatomical landmarks, the shoulder, elbow, and wrist in real time and calculate the angle of arm flexion during therapeutic exercises. The program includes features for repetition counting, patient data management, and exercise history logging. Experimental evaluations were conducted to examine the impact of camera angle and body posture on detection accuracy. Results indicate that side and straight-on views at 45° and 90° camera angles yield optimal accuracy for detecting arm elevation, while oblique angles result in reduced performance. The system exhibited the highest reliability in detecting and counting exercise repetitions at lower arm elevation angles, particularly within the 0–30° range. In contrast, detection accuracy significantly declined at higher angles (40°, 60°, and 90°), especially when the camera was positioned directly in front of the user. This research contributes to the advancement of computer-assisted physical therapy by offering an affordable and practical tool to assist healthcare professionals in monitoring and guiding patient recovery.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารฯ ถือเป็นลิขสิทธิ์ของวารสารฯ หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อกระทำการใดๆ จะได้รับอนุญาต แต่ห้ามนำไปใช้เพื่่อประโยชน์ทางธุรกิจ และห้ามดัดแปลง
References
กรมควบคุมโรค กระทรวงสาธารณสุข, “รายงานสถิติสาธารณะสุขกระทรวงสาธารณสุข”, กระทรวงสาธารณสุข, 2022.
สมศักดิ์ เทียมเก่า, “อุบัติการณ์โรคหลอดเลือดสมองประเทศไทย”, วารสารประสาทวิทยาแห่งประเทศไทย, vol. 37, p. 54–60, 2021.
ตรีนุช อมรภิญโญเกียรติ, “บทบาทของการใช้หุ่นยนต์ฟื้นฟูผู้ป่วยโรคหลอดเลือดสมองในโรงพยาบาล ตากสิน”, วารสารสาธารณสุขและวิทยาศาสตร์สุขภาพ, vol. 5, p. 160–171, 2022.
ปิยธิดา ชูรักษ์, “กรอบแนวคิดการกายภาพบำบัดผู้ป่วยโรคหลอดเลือดสมองในชุมชน”, Thaksin University Online Journal, vol. 1, p. 65, 2022.
SIMOES, W.*, REIS, L., ARAUJO, C., MAIA JR., J., "Accuracy Assessment of 2D Pose Estimation with MediaPipe for Physiotherapy Exercises", ScienceDirect, 2024.
Norapat Labchurat, "Enhancing Stroke Rehabilitation at Home: Evaluating MediaPipe for Human Pose Estimation", Journal of Information Science and Technology (JIST), Vol. 13 No. 1, 2023.
L. Norapat, K. Anupun, C. Worawat, and K. Kingkarn, "Leveraging Exergaming and Standard Webcams for Stroke Rehabilitation", 12th Global Conference on Consumer Electronics (GCCE), Japan, 2023.
B. Sheng, J. Zhao, Y. Zhang, S. Xie, and J. Tao, "Commercial device based hand rehabilitation systems for stroke patients: State of the art and future prospects", Heliyon, 2023.
Seung Min Ryu, Keewon Shin, "Orthopedic surgeon level joint angle assessment with artificial intelligence", Journal of Healthcare Engineering, 2023.
Abhinav Prajapati; Rahul Chauahan; Himadri Vaidya, "Human Exercise Posture Detection Using MediaPipe and Machine Learning", 3rd International Conference on Advancement in Electronics & Communication Engineering (AECE), 2023.
A. Latreche et al., "Reliability and validity analysis of MediaPipe-based measurement system for some human rehabilitation motions", Measurement, vol. 214, p. 112826, 2023.
S. Almasi, H. Ahmadi, F. Asadi, L. Shahmoradi, G. Arji, M. Alizadeh, and H. Kolivand, "Kinect-based rehabilitation systems for stroke patients: A scoping review", BioMed research international, 2022.
Springer. "Pose Estimation and Joint Angle Detection Using Mediapipe Machine Learning Framework", In: Proceedings of the International Conference on Intelligent Systems Design and Applications (ISDA), 2022.
P. Palani, S. Panigrahi, S. A. Jammi and A. Thondiyath, "Real-time Joint Angle Estimation using Mediapipe Framework and Inertial Sensors", IEEE 22nd International Conference on Bioinformatics and Bioengineering (BIBE), 2022.
Department of Disease Control, October, 2021. Available From:http://www.thaincd.com/2016/news/hot-news-detail.php?id=14121&gid=18
Jianyu Wang, Wenbo Li, Yan Huang, Liang Lin. "Multi-human Pose Estimation with Spatial Diversity and Temporal Consistency", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p. 980–989, 2020.
V. Bazarevsky and I. Grishchenko, "On-device, real-time body pose tracking with mediapipe blazepose", Google Research Blog, August, 2020. Available from: https://ai.googleblog.com/2020/08/on-device-real-time-body posetracking.
Yahya, M., Shah, J. A., Warsi, A., Kadir, K., Khan, S., & Izani, M., "Real Time Elbow Angle Estimation Using Single RGB Camera", Computer Science, Cornell University, 2018.
Mustafa C. Kutlu, "A Home-Based Functional Electrical Stimulation System for Upper-Limb Stroke Rehabilitation", Thesis University of Southampton, 2016.
Michele Pirovano, Renato Mainetti, Gabriel Baud-Bovy, Pier Luca Lanzi, and Nunzio Alberto Borghese, "Self-Adaptive Games for Rehabilitation at Home", IEEE conference on Computational Intelligence and Gam, p. 179-186, 2015.
Mahmoud El-Gohary; James McNames, "Shoulder and Elbow Joint Angle Tracking With Inertial Sensors", IEEE Transactions on Biomedical Engineering, Volume: 59, Issue: 9, September, 2012.