Predicting Compressive Strength of Hybrid Cement Concrete Using Multiple Linear Regression Sustainable Construction Application

Main Article Content

Pawnrat Thumrongvut
Thitipong Jamrus
Krisanarach Nitisiri
Chuleeporn Wongloucha
Jaksada Thumrongvut

Abstract

This study investigates the compressive strength of concrete using hybrid cement as a binding material, which offers the advantages of lower energy consumption and reduced carbon dioxide emissions during production. The study examines concrete mixtures using Portland and hybrid cement under varying curing times. The primary objective is to develop a predictive model for concrete compressive strength using multiple linear regression analysis and to identify factors influencing compressive strength by comparing the predicted results with laboratory test data. The findings reveal that concrete using hybrid cement shows compressive strength trends similar to Portland cement concrete. Hybrid cement concrete exhibits higher compressive strength with increased curing time than Portland cement concrete. Furthermore, statistical analysis indicates that the predictive model can accurately forecast compressive strength with 92.00% accuracy, with curing duration and water-to-cement ratio identified as the most significant factors. This study provides a valuable reference for developing sustainable concrete and has applications in building construction and infrastructure development.

Article Details

How to Cite
Thumrongvut, P., Jamrus, T. ., Nitisiri, K., Wongloucha, C. ., & Thumrongvut, J. . (2025). Predicting Compressive Strength of Hybrid Cement Concrete Using Multiple Linear Regression Sustainable Construction Application. Thai Industrial Engineering Network Journal, 11(2), 66–75. retrieved from https://ph02.tci-thaijo.org/index.php/ienj/article/view/258928
Section
Research and Review Article

References

Scrivener KL, John VM, Gartner EM. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research. 2018; 114: 2-26.

Habert G, Miller SA, John VM, Provis JL, Favier A, Horváth A, Scrivener KL. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment. 2020; 1(11): 559-573.

Gartner E, Hirao H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research. 2015; 78: 126-142.

Montgomery DC, Peck EA, Vining GG. Introduction to Linear Regression Analysis, 6th ed. John Wiley & Sons; 2021.

ชาญชัย เงาะปก จักษดา ธำรงวุฒิ นำชัย จ้อยสูงเนิน เชิดศักดิ์ สุขศิริพัฒนพงศ์, สิทธิชัย แสงอาทิตย์. การประยุกต์ใช้ปูนซีเมนต์ไฮดรอลิกที่เป็นมิตรต่อสิ่งแวดล้อมสำหรับเสาท่อเหล็กหน้าตัดสี่เหลี่ยมผืนผ้ากรอกคอนกรีตกำลังสูง. วารสารวิทยาศาสตร์และเทคโนโลยี. 2567; 32(3): 96-112.

วรรธนะ ประภาภรณ. การวิเคราะห์ความสัมพันธ์ของปริมาณวัสดุก่อสร้างสำหรับอาคารคอนกรีตเสริมเหล็กระหว่างวิธีแบบจำลองการถดถอยเชิงซ้อนและวิธีโครงข่ายประสาทเทียม. วิศวกรรมสาร มหาวิทยาลัยนเรศวร. 2562; 14(1): 84-102.

Ameen JRM, Neale RH, Abrahamson M. An application of regression analysis to quantify a claim for increased costs. Construction Management & Economics. 2003; 21(2): 159-165.

Boukarta S. Predicting energy demand of residential buildings: A linear regression-based approach for a small sample size. Selected Scientific Papers - Journal of Civil Engineering. 2021; 16(2): 67-85.

Shastry A, Sanjay HA, Bhanusree E. Prediction of crop yield using regression techniques. International Journal of Soft Computing. 2017; 12(2): 96-102.

Qiu M, Zigler C, Selin NE. Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions. Atmospheric Chemistry and Physics. 2022; 22(16): 10551-10566.

Shaker AH, Ibrahim IA, Gharghan SK. Cardiovascular diseases prediction using machine learning algorithms: A comparative study. In AIP Conference Proceedings. 2024; 3232(1): 04004.

Roh S, Shin Y, Yang S. Optimization of green concrete mixture design using hybrid machine learning techniques. Construction and Building Materials. 2021; 299: 124275.