Spiders as an alternative predator to control aphids in agroecosystem
Keywords:
Prey, Natural enemy, Pest, InsecticideAbstract
Aphid outbreaks in economic crops worldwide pose a significant challenge to crop production. Many previous studies have focused on biological control of pests to reduce reliance on pesticides. Spiders have been considered as potential predators for controlling diverse pest populations in agroecosystems, including aphids. However, studies on the effectiveness of spiders in suppressing aphids are limited compared to other insect pests. This article reviews the efficacy of spiders as aphid predators in agroecosystems, presenting the role of spiders in the agroecosystem, the advantages, and limitations of using spiders as biological control agents for aphid controls, and explores the augmentation of spiders in conjunction with biological control strategies.
References
Alioghli, N., Fathi, S. A. A., Razmjou, J., & Hassanpour, M. (2022). Does intercropping patterns of potato and safflower affect the density of Leptinotarsa decemlineata (Say), predators, and the yield of crops? Biological Control, 175,
Almdal, C. D., & Costamagna, A. C. (2023). Annual crops contribute more predators than perennial habitats during an aphid outbreak. Insects, 14(7), 624.
Amaral, D. S. S. L., Venzon, M., dos Santos, H. H., Sujii, E. R., Schmidt, J. M., & Harwood, J. D. (2016). Non-crop plant communities conserve spider populations in chili pepper agroecosystems. Biological Control, 103, 69-77.
Benzina, S., Harizia, A., Elouissi, A., Canelo, T., & Bonal, R. (2023). Effects of winter pruning intensity on the interactions between the apple tree and rosy apple aphid Dysaphis plantaginea (Hemiptera: Aphididae). Journal of Plant Diseases and Protection, 130(6), 1239-1250.
Bianchi, F. J. J. A., & Werf, W. v. d. (2004). Model evaluation of the function of prey in non-crop habitats for biological control by ladybeetles in agricultural landscapes. Ecological Modelling, 171(1), 177-193.
Birkhofer, K., Gavish-Regev, E., Endlweber, K., Lubin, Y. D., Von Berg, K., Wise, D. H., & Scheu, S. (2008). Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bulletin of Entomological Research, 98(3), 249-255.
Blackman, R. L., & Eastop, V. F. (2000). Aphids on the world's crops: an identification and information guide: John Wiley & Sons Ltd.
Brodeur, J., & Rosenheim, J. A. (2000). Intraguild interactions in aphid parasitoids. Entomologia Experimentalis et Applicata, 97(1), 93-108.
Chapman, E. G., Schmidt, J. M., Welch, K. D., & Harwood, J. D. (2013). Molecular evidence for dietary Selectivity and pest suppression potential in an epigeal spider community in winter wheat. Biological Control, 65(1), 72-86.
Costamagna, A. C., & Landis, D. A. (2007). Quantifying predation on soybean aphid through direct field observations. Biological Control, 42(1), 16-24.
De Roincé, C. B., Lavigne, C., Mandrin, J. F., Rollard, C., & Symondson, W. O. C. (2013). Early-season predation on aphids by winter-active spiders in apple orchards revealed by diagnostic PCR. Bulletin of entomological research, 103(2), 148-154.
Dharmaraj, J., Gunasekaran, C., & Rajkumar, V. (2018). Diversity and plethora of spider fauna at different habitats of the Nilgiris, Tamilnadu south India. International journal of recent scientific research, 9(3A), 24634-24637.
Diehl, E., Sereda, E., Wolters, V., & Birkhofer, K. (2013). Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta-analysis. Journal of Applied Ecology, 50(1), 262-270.
Gajski, D., Mifková, T., Košulič, O., Michálek, O., Serbina, L. Š., Michalko, R., & Pekár, S. (2023). Brace yourselves, winter is coming: the winter activity, natural diet, and prey preference of winter-active spiders on pear trees. Journal of Pest Science, 1-14.
Gavish-Regev, E., Rotkopf, R., Lubin, Y., & Coll, M. (2009). Consumption of aphids by spiders and the effect of additional prey: evidence from microcosm experiments. BioControl, 54(3), 341-350.
Ghafoor, A., & Mahmood, A. (2011). Population dynamics of the araneid fauna from district Gujranwala, Pakistan. The Journal of Animal and Plant Sciences, 21(4), 812-816.
Goggin, F. L. (2007). Plant–aphid interactions: molecular and ecological perspectives. Current Opinion in Plant Biology, 10(4), 399-408.
Greenstone, M. H. (1999). Spider predation: how and why we study it. The Journal of Arachnology, 27(1), 333-342.
Haddad, C. R., Louw, S. V. M., & Dippenaar-Schoeman, A. S. (2004). Spiders (Araneae) in ground covers of pistachio orchards in South Africa. African Plant Protection, 10(2), 97-107.
Harwood, J. D., Phillips, S. W., Sunderland, K. D., & Symondson, W. O. C. (2001). Secondary predation: quantification of food chain errors in an aphid–spider–carabid system using monoclonal antibodies. Molecular Ecology, 10(8), 2049-
Harwood, J. D., Sunderland, K. D., & Symondson, W. O. C. (2003). Web-location by linyphiid spiders: prey-specific aggregation and foraging strategies. Journal of Animal Ecology, 72(5), 745-756.
Harwood, J. D., Sunderland, K. D., & Symondson, W. O. C. (2004). Prey selection by linyphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid consumption in the field. Molecular Ecology, 13(11), 3549-3560.
Harwood, J. D., Sunderland, K. D., & Symondson, W. O. C. (2005). Monoclonal antibodies reveal the potential of the tetragnathid spider Pachygnatha degeeri (Araneae: Tetragnathidae) as an aphid predator. Bulletin of
Entomological Research, 95(2), 161-167.
Hassell, M. P. (1978). The Dynamics of Arthopod Predator-Prey Systems. Princeton University Press.
Hesselberg, T., Boyd, K. M., Styrsky, J. D., & Gálvez, D. (2023). Host plant specificity in web-building spiders. Insects, 14(3), 229.
Hibbert, A. C., & Buddle, C. M. (2008). Assessing the dispersal of spiders within agricultural fields and an adjacent mature forest. The Journal of Arachnology, 36(1), 195-198, 194.
Höfer, H., & Brescovit, A. D. (2001). Species and guild structure of a neotropical spider assemblage (Araneae) from Reserva Ducke, Amazonas, Brazil. Andrias, 15, 99-119.
Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems & Environment, 103(1), 1-25.
Holland, J. M., & Reynolds, C. J. M. (2003). The impact of soil cultivation on arthropod (Coleoptera and Araneae) emergence on arable land. Pedobiologia, 47(2), 181-191.
Hull, R. (2013). Plant virology. 5th Edition., Academic press.
Kuusk, A. K., & Ekbom, B. (2010). Lycosid spiders and alternative food: feeding behavior and implications for biological control. Biological Control, 55(1), 20-26.
Kuusk, A. K., & Ekbom, B. (2012). Feeding habits of lycosid spiders in field habitats. Journal of Pest Science, 85(2), 253-260.
Lang, A. (2003). Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia, 134(1), 144-153.
Lefebvre, M., Franck, P., Olivares, J., Ricard, J.-M., Mandrin, J.-F., & Lavigne, C. (2017). Spider predation on rosy apple aphid in conventional, organic and insecticide-free orchards and its impact on aphid populations. Biological Control, 104, 57-65.
Lester, P. J., & Harmsen, R. (2002). Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two‐prey system. Journal of Applied Ecology, 39(3), 455-468.
Loxdale, H. D., Hardie, J., Halbert, S., Foottit, R., Kidd, N. A. C., & Carter, C. I. (1993). The relative importance of short-and long-range movement of flying aphids. Biological Reviews, 68(2), 291-311.
Madsen, M., Terkildsen, S., & Toft, S. (2004). Microcosm studies on control of aphids by generalist arthropod predators: effects of alternative prey. BioControl, 49, 483-504.
Marc, P., Canard, A., & Ysnel, F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems & Environment, 74(1), 229-273.
Michalko, R., Mifková, T., & Pekár, S. (2021). Seasonal dynamics of prey utilization and individual specialization in a generalist spider in a pear orchard. Biological Control, 163, 104763.
Michalko, R., & Pekár, S. (2016). Different hunting strategies of generalist predators result in functional differences. Oecologia, 181, 1187-1197.
Michalko, R., Pekár, S., & Entling, M. H. (2019). An updated perspective on spiders as generalist predators in biological control. Oecologia, 189(1), 21-36.
Miliczky, E. R., & Horton, D. R. (2005). Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biological
Control, 33(3), 249-259.
Mishra, A., & Rastogi, N. (2023). Does prey characteristics influence web-building plasticity of the ecologically dominant orb-web weaving spider, Neoscona theisi (Walckenaer 1841)? International Journal of Tropical Insect Science, 43(1), 257-265.
Mrzljak, J., & Wiegleb, G. (2000). Spider colonization of former brown coal mining areas — time or structure dependent? Landscape and Urban Planning, 51(2), 131-146.
Öberg, S., & Ekbom, B. (2006). Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Annals of Applied Biology, 149(2), 203-211.
Overton, K., Ward, S. E., Hoffmann, A. A., & Umina, P. A. (2023). Lethal impacts of insecticides and miticides on three agriculturally important aphid parasitoids. Biological Control, 178, 105143.
Pekár, S., Mayntz, D., Ribeiro, T., & Herberstein, M. E. (2010). Specialist ant-eating spiders selectively feed on different body parts to balance nutrient intake. Animal Behaviour, 79(6), 1301-1306.
Rand, T. A., & Tscharntke, T. (2007). Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos, 116(8), 1353-1362.
Rashedi, A., Rajabpour, A., Rasekh, A., & Zandi-Sohani, N. (2019). Interactions between host plant, Aphis fabae, and its natural enemies, Orius albidipennis and Lysiphlebus fabarum in a tritrophic system. Journal of Asia-Pacific -Entomology, 22(3), 847-852.
Riechert, S. E. (1999). The hows and whys of successful pest suppression by spiders: insights from case studies. Journal of Arachnology, 387-396.
Riechert, S. E., & Lockley, T. (1984). Spiders as biological control agents. Annual review of entomology, 29(1), 299-320.
Rosenheim, J. A., & Corbett, A. (2003). Omnivory and the indeterminacy of predator function: can a knowledge of foraging behavior help?. Ecology, 84(10), 2538-2548.
Rosenheim, J. A., Limburg, D. D., Colfer, R. G., Fournier, V., Hsu, C. L., Leonardo, T. E., & Nelson, E. H. (2004). Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size?. Oecologia, 140, 577-585.
Royauté, R., & Buddle, C. M. (2012). Colonization dynamics of agroecosystem spider assemblages after snow-melt in Quebec (Canada). The Journal of Arachnology, 40(1), 48-58, 11.
Sackett, T. E., Buddle, C. M., & Vincent, C. (2009). Dynamics of spider colonization of apple orchards from adjacent deciduous forest. Agriculture, Ecosystems & Environment, 129(1), 144-148.
Samu, F, & Biro, Z. (1993). Functional response, multiple feeding and wasteful killing in a wolf spider (Araneae: Lycosidae). European Journal of Entomology 90, 471-476.
Scarlato, M., Bao, L., Rossing, W. A. H., Dogliotti, S., Bertoni, P., & Bianchi, F. J. J. A. (2023). Flowering plants in open tomato greenhouses enhance pest suppression in conventional systems and reveal resource saturation for natural enemies in organic systems. Agriculture, Ecosystems & Environment, 347, 108389.
Schmidt-Entling, M. H., & Siegenthaler, E. (2009). Herbivore release through cascading risk effects. Biology Letters, 5(6), 773-776.
Schmidt, M. H., Thewes, U., Thies, C., & Tscharntke, T. (2004). Aphid suppression by natural enemies in mulched cereals. Entomologia Experimentalis et Applicata, 113(2), 87-93.
Schoeny, A., Lauvernay, A., Lambion, J., Mazzia, C., & Capowiez, Y. (2019). The beauties and the bugs: A scenario for designing flower strips adapted to aphid management in melon crops. Biological Control, 136, 103986.
Snyder, W. E., & Ives, A. R. (2001). Generalist predators disrupt biological control by a specialist parasitoid. Ecology, 82(3), 705-716.
Snyder, W. E., & Wise, D. H. (2001). Contrasting trophic cascades generated by a community of generalist predators. Ecology, 82(6), 1571-1583.
Sunderland, K. (1999). Mechanisms underlying the effects of spiders on pest populations. Journal of Arachnology, 308-316.
Sushila, Denodia, N., Teotia, U. V. S., & Kumari, S. (2023). Ecology and Diversity of Aphids: A Review. Ecology, Environment and Conservation, 29, 436-443.
Sweeney, K., Cusack, B., Armagost, F., O’Brien, T., Keiser, C. N., & Pruitt, J. N. (2013). Predator and prey activity levels jointly influence the outcome of long-term foraging bouts. Behavioral Ecology, 24(5), 1205-1210.
Tamburini, G., De Simone, S., Sigura, M., Boscutti, F., & Marini, L. (2016). Conservation tillage mitigates the negative effect of landscape simplification on biological control. Journal of Applied Ecology, 53(1), 233-241.
Uetz, G. W., & Smith, E. I. (1999). Asymmetry in a visual signaling character and sexual selection in a wolf spider. Behavioral Ecology and Sociobiology, 45(2), 87-93.
Wyss, E., Niggli, U., & Nentwig, W. (1995). The impact of spiders on aphid populations in a strip-managed apple orchard. Journal of Applied Entomology, 119(1-5), 473-478.
Wyss, E., Villiger, M., & Müller-Schärer, H. (1999). The potential of three native insect predators to control the rosy apple aphid, Dysaphis plantaginea. BioControl, 44(2), 171-182.
Zepeda-paulo, F. A., Simon, J.-C., Ramirez, C. C., Fuentest-contreras, E., Margaritopoulos, J. T., Wilson, A. C. C., Sorenseon, C. E., Briones, L. M., Azevedo, R., Ohashi, D. V., Lacroix, C., Glais, L., & Figueroa, C. C. (2010). The invasion route for an insect pest species: the tobacco aphid in the New World. Molecular Ecology, 19(21), 4738-47.