People Counting in Computer Rooms Using YOLO Algorithm at Office of Academic Resources and Information Technology, Rajamangala University of Technology Suvarnabhumi

Main Article Content

jureeporn Onchan
อภิสิทธิ์ ต้นพงษ์
ศรัณย์พงษ์ ศรีพูน
เอกชัย เนาวนิช
ธนพร ปฏิกรณ์

Abstract

The purposes of this research were: 1) to develop a system for counting the number of entries and exits of users of a computer room; 2) to evaluate the performance of the developed system; and 3) to investigate user satisfaction with the system. The system was developed in Python on the Windows operating system and employed the YOLOv8 algorithm to detect and count people from webcam video streams. Two sample groups were used in the study: 1) a system performance testing group, consisting of students appearing in real entry–exit events during actual computer room service hours, selected through incidental sampling (49 students for camera position 1 and 64 students for camera position 2); and 2) a user satisfaction group, consisting of 23 personnel from the Educational Technology and Information Technology divisions, selected through purposive sampling. The research instruments were the developed entry–exit counting system and a user satisfaction questionnaire. Data were analyzed using descriptive statistics, namely mean and standard deviation.


The results showed that 1) the entry–exit counting system for the computer room of the Office of Academic Resources and Information Technology, Rajamangala University of Technology Suvarnabhumi, was successfully developed and comprised seven functional components; 2) the system performance testing indicated that the camera installation position affected detection accuracy, with the side-view camera position yielding the highest accuracy 100% accuracy for detecting entries and 98.44% accuracy for detecting exits; and 3) overall user satisfaction with the developed system was at the highest level ( equation = 4.55, S.D. = 0.56).

Article Details

How to Cite
Onchan, jureeporn, ต้นพงษ์ อ. ., ศรีพูน ศ. ., เนาวนิช เ., & ปฏิกรณ์ ธ. . (2025). People Counting in Computer Rooms Using YOLO Algorithm at Office of Academic Resources and Information Technology, Rajamangala University of Technology Suvarnabhumi. Journal of Applied Information Technology, 11(2), 112–123. retrieved from https://ph02.tci-thaijo.org/index.php/project-journal/article/view/258668
Section
Articles

References

Wang, X., Liu, J., Yu, X., Chen, X., Yu, Y., & Zhao, Z. (2023). People Counting with Carry-on RFID Tags. 2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS), 1–10. https://doi.org/10.1109/IWQoS57198.2023.10188704

Perra, C., Kumar, A., Losito, M., Pirino, P., Moradpour, M., & Gatto, G. (2021). Monitoring indoor people presence in buildings using low-cost infrared sensor array in doorways. Sensors, 21(12). https://doi.org/10.3390/s21124062

Tian, L., Chen, L., Xu, Z., & Chen, Z. (2021). A people-counting and speed-estimation system using wi-fi signals. Sensors, 21(10). https://doi.org/10.3390/s21103472

Aydogdu, C. Y., Hazra, S., Santra, A., & Weigel, R. (2020). Multi-Modal Cross Learning for Improved People Counting using Short-Range FMCW Radar. 2020 IEEE International Radar Conference (RADAR), 250–255. https://doi.org/10.1109/RADAR42522.2020.9114871

Mokayed, H., Quan, T. Z., Alkhaled, L., & Sivakumar, V. (2022). Real-Time Human Detection and Counting System Using Deep Learning Computer Vision Techniques. Artificial Intelligence and Applications, 1(4), 205–213. https://doi.org/10.47852/bonviewAIA2202391

ปราโมทย์ ปัญญาโต. (2019). การสร้างระบบตรวจนับบุคคลแบบเวลาจริงราคาประหยัดบน Raspberry Pi โดยประยุกต์อัลกอริทึม Tiny YOLO V3. ENGINEERING TRANSACTIONS, 22, 72–78.

Elaoua, A., Nadour, M., Cherroun, L., & Elasri, A. (2023). Real-Time People Counting System using YOLOv8 Object Detection. Proceedings - 2023 2nd International Conference on Electronics, Energy and Measurement, IC2EM 2023. https://doi.org/10.1109/IC2EM59347.2023.10419684

กัญญารัตน์ ยอดยิ่ง, คฑาเทพ ขำบ้านกวย, กรกฎา จงเจริญ, สุวรรณา จงทอง, และณัฐชามญฑ์ ศรีจำเริญรัตนา. (2562). เครื่องนับจำนวนคนเข้า-ออกแบบทางเดียว. งานประชุมวิชาการระดับชาติ ครั้งที่ 11 มหาวิทยาลัยราชภัฏนครปฐม. (น.151-158). มหาวิทยาลัยราชภัฏนครปฐม.

Telicko, J., & Jakovics, A. (2023). Comparative Analysis of YOLOv8 and Mack-RCNN for People Counting on Fish-Eye Images. International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023. https://doi.org/10.1109/ICECCME57830.2023.10252265

Christanto, H. J., & Singgalen, Y. A. (2023). Analysis and Design of Student Guidance Information System through Software Development Life Cycle (SDLC) dan Waterfall Model. Journal of Information Systems and Informatics, 5(1), 259–270. https://doi.org/10.51519/journalisi.v5i1.443

Murugaiyan, D. (2012). WATEERFALLVs V-MODEL Vs AGILE: A COMPARATIVE STUDY ON SDLC. International Journal of Information Technology and Business Management 2(1), 26-30.