การประเมินดัชนีทางเมตาบอลิซึมและสมรรถนะการสืบพันธุ์ ของโคนมที่ไม่กลับสัดหลังคลอด

ผู้แต่ง

  • Catthareeya Sukwan คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครราชสีมา
  • Phukphon Munglue มหาวิทยาลัยราชภัฏอุบลราชธานี
  • Pitipat Kitpipatkun มหาวิทยาลัยเทคโนโลยีราชมงคลตะวันออก
  • Sompong Wongma คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครราชสีมา
  • Prayuth Kusolrat คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครราชสีมา

คำสำคัญ:

ภาวะพลังงานติดลบ, โคนม, ไม่กลับสัดหลังคลอด

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อตรวจสอบดัชนีทางเมตาบอลิซึมและสมรรถนะการสืบพันธุ์ของโคนมที่มีการไม่กลับสัดหลังคลอด ทำการศึกษาในแม่วัววัวพันธุ์ผสมโฮลสไตน์ ฟรีเชียน จำนวน 30 ตัว โดยแบ่งแม่โคออกเป็น 2 กลุ่มตามพฤติกรรมที่แสดงการเป็นสัดภายในระยะ 45-50 วันหลังคลอด ได้แก่กลุ่มที่มีการกลับสัด (E cows; แสดงพฤติกรรมเป็นสัดภายใน 45-50 วันหลังคลอด; n=12) และไม่สามารถกลับสัด  (NE cows; ไม่แสดงพฤติกรรมการเป็นสัดภายใน 45-50 วันหลังคลอด; n=18) ผลการศึกษาพบว่าเมื่อเปรียบเทียบข้อมูลกับ E cows, กลุ่ม NE cows มีแนวโน้มให้ผลผลิตนมสูงแต่อัตราการผสมติดครั้งแรกต่ำ (P>0.05)  และพบยังพบว่ามีระดับเอสโตรเจน (P<0.05), โปรเจสเตอโรน (P>0.05) และ IGF-1 (P<0.05) ต่ำกว่า นอกจากนี้ยังพบว่าในแม่โคกลุ่มนี้มีระดับความเข้มข้นของ ไตรกลีเซอไรด์, HDL และ VLDL ลดลงอย่างมีนัยสำคัญ (P<0.01)  อีกทั้งยังพบว่าปริมาณ BHB (P>0.05) และ NEFA (P<0.01) ในซีรัมสูงขึ้น แต่มีระดับของ กลูโคส (P>0.05) และ อินซูลิน (P<0.01) ที่ต่ำกว่าแม่วัวที่สามารถกลับสัดได้อย่างมีนัยสำคัญ  แม้ว่าการศึกษานี้ไม่พบความสัมพันธ์ของ BHB กับฮอร์โมนที่สร้างจากรังไข่และฮอร์โมนอินซูลิน แต่ก็พบว่าความเข้มข้นของ NEFA ที่ตรวจได้จากตัวอย่างเลือดของแม่โคที่ไม่กลับสัด (NE cows) แสดงความสัมพันธ์เชิงลบกับฮอร์โมนเอสโตรเจน (r=-0.531, P<0.05) และโปรเจสเตอโรน (r=-0.621, P<0.01) จากข้อมูลเหล่านี้ชี้ให้เห็นว่าแม่โคที่ไม่สามารถกลับสัดได้หลังคลอดอยู่ในภาวะพลังงานติดลบ ซึ่งส่งผลให้เพิ่มความเสี่ยงของความผิดปกติของเมตาบลิซึมการใช้พลังงานของร่างกายและอาจส่งผลทำให้ประสิทธิภาพการสืบพันธุ์ลดลง

Author Biographies

Phukphon Munglue, มหาวิทยาลัยราชภัฏอุบลราชธานี

สาขาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏอุบลราชธานี

2 ถ. ราชธานี ต. ในเมือง อ.เมือง จังหวัดอุบลราชธานี 34000

Pitipat Kitpipatkun, มหาวิทยาลัยเทคโนโลยีราชมงคลตะวันออก

คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลตะวันออก

43 ม.6 ต.บางพระ อ.ศรีราชา จ.ชลบุรี 20110

References

Brunner, N., Groeger, S., Raposo, J. C., Bruckmaier, R. M. & Gross, J. J. (2019). Prevalence of subclinical ketosis and production diseases in dairy cows in Central and South America, Africa, Asia, Australia, New Zealand, and Eastern Europe. Transl Anim Sci 3: 19-27.

Butler W. R. (2000). Nutritional interactions with reproductive performance in dairy cattle. Anim Reprod Sci. 61: 449-457.

Butler, S. T., Marr, A. L., Pelton, S. H., Radcliff, R. P., Lucy, M. C. & Butler, W. R. (2003). Insulin restores GH responsiveness during lactation-induced negative energy balance in dairy cattle: Effects on expression of IGF-I and GH receptor 1A. J Endocrinol. 176: 205-217.

Carvalho, P. D., Souza, A. H., Amundson, M. C., Hackbart, K. S., Fuenzalida, M. J., Herlihy, M. M., Ayres, H., Dresch, A. R., Vieira, L. M., Guenther, J. N., Grummer, R. R., Fricke, P.M., Shaver, R.D. & Wiltbank M.C. (2014). Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows. J Dairy Sci. 97: 3666-3683.

Chilliard, Y. (1999). Metabolic adaptations and nutrient partitioning in the lactating animal. In: Martinet, J., Houdebine, L. M. & Head, H. H. (editors). Biology of lactation. Paris: Collection Mieux Comprendre, Editions INRA. p. 503-522.

Dann, H. M., Morin, D. E., Murphy, M. R., Bollero, G. A. & Drackley, J. K. (2005). Prepartum intake, postpartum induction of ketosis, and periparturient disorders affect the metabolic status of dairy cows. J Dairy Sci. 88: 3249-3264.

Djoković R., Cincović, M., Kurćubić, V., Petrović, M., Lalović, M., Jašović, B. & Stanimirovic, Z. (2014). Endocrine and metabolic status of dairy cows during transition period. Thai J Vet Med. 44(1): 59-66.

Fiore, E., Arfuso, F., Gianesella, M., Vecchio, D., Morgante, M., Mazzotta, E., Badon, T., Rossi, P., Bedin, S. & Piccione, G. (2018). Metabolic and hormonal adaptation in Bubalus bubalis around calving and early lactation. PLoS ONE. 13 (4): 0193803.

Grummer, R. R. (1993). Etiology of lipid-related metabolic disorders in periparturient dairy cows. J Dairy Sci. 76: 3882-3896.

Gutierrez, C. G., Oldham, J., Bramely, S. A., Gong, J. G. Campbell, B. K. & Robert, W. (1997). The recruitment of ovarian follicles is enhanced by increased dietary intake in heifers. J Anim Sci. 76: 1876-1884.

Holtenius, K., Sternbauer, K. & Holtenius, P. (2000). The effect of the plasma glucose level on the abomasal function in dairy cows. J Anim Sci. 78: 1930-1935.

Huzzey, J. M., Nydam, D.V., Grant, R. J. & Overton, T. R. (2011). Associations of prepartum plasma cortisol haptoglobin, fecal cortisol metabolites, and non-esterified fatty acids with postpartum health status in Holstein dairy cows. J Dairy Sci. 94(12): 5878-5889.

Imhasly, S., Bieli, C., Naegeli, H., Nyström, L., Ruetten, M., & Gerspach, C. (2015). Blood plasma lipidome profile of dairy cows during the transition period. BMC Veterinary Research. 11: 252-265.

LeBlanc, S. J., Lissemore, K. D., Kelton, D. F., Duffield, T. F. & Leslie, K. E. (2006). Major advances in disease prevention in dairy cattle. J. Dairy Sci. 89:1267-1279.

Lucy, M. (2000). Regulation of ovarian follicular growth by somatotropin and insulin-like growth factors in cattle. J Dairy Sci. 83: 1635-1647.

Mekonnin, A. B., Howie, A. F., Riley, S. C., Gidey, G., Tegegne, D. T., Desta, G., Ashebir, G., Gebrekidan, B. & Harlow, C. R. (2017). Serum, milk, saliva and urine progesterone and estradiol profiles in crossbred (Zebu x Holstein Friesian) dairy cattle. Anim Husb Dairy Vet Sci. 1(3): 1-10.

Miller, B. G. & Moore, N. W. (1976). Effects of progesterone and oestradiol on endometrial metabolism and embryo survival in the ovariectomized ewe. Theriogenology. 6: 565-573.

NRC. 2001. Nutrient requirements of dairy cattle (7th ed.). The National Academic press: Washington, D.C., USA.

Oetzel, G. R. (2004). Monitoring and testing dairy herds for metabolic disease. Vet Clin North Am Food Anim Pract. 20: 651-674.

Ohtsuka, H., Koiwa, M., Hatsugaya, A., Kudo, K., Hoshi, F., Itoh, N., Yokota, H., Okada, H. & Kawamura S. (2001). Relationship between serum tumor necrosis factor-alpha activity and insulin resistance in dairy cows affected with naturally occurring fatty liver. J Vet Med Sci. 63: 1021-1025.

Overton, T. R. & Waldron, M. R. (2004). Nutritional management of transition dairy cows: strategies to optimize metabolic health. J Dairy Sci. 87: E105-E119.

Rhodes, F. M., McDougall, S., Burke, C. R., Verkerk, G. A. & Macmillang, K. L. (2003). Treatment of cows with an extended postpartum anestrous Interval: invite review. J Dairy Sci. 86: 1876-1894.

Roberts, A. J., Nugent, R. A., Klindt, J. & Jenkins, T. G. (1997). Circular insulin like growth factors-1, Insulin like growth factor Sbinding proteins, growth hormones and resumption of estrous in postpartum cows subjected to dietary energy restriction. J Anim Sci. 75: 1909-1917.

Spicer, L. J., Alpizar, E. & Ecternkamp, S. E. (1993). Effects of insulin, insulin-like growth factor 1, and gonadotropins on bovine granulosa cell proliferation, progesterone production, estradiol production, and (or) insulin-like growth factor 1 production in vitro. J. Anim. Sci. 71: 1232-1241.

Thatcher, W. W., De La Sota, R. L., Schmitt, E. J., Diaz, T. C., Badinga, L., Simmen, F. A. Staples, C. R. & Drost, M. 1996.

Control and management of ovarian follicles in cattle to optimize fertility. Reprod Fertil Devel. 8: 203-217.

Tiez, N. W. 1995. Clinical Guide to Laboratory Test. 3rd Edition. W.B. Saunders Company, Philedelphia.

Vasconcelos, J. L. M., Pereira, M. H. C., Meneghetti, M., Dias, C. C., Sá Filho, O. G., Peres, R. F. G., Rodrigues, A. D. P. &

Wiltbank, M. C. (2013). Relationships between growth of the preovulatory follicle and gestation success in lactating dairy cows. Anim. Reprod. 10(3): 206-214.

Wang, H., Gao, Y., Xia, C., Zhang, H., Qian, W. & Cao Y. 2016. Pathway analysis of plasma different metabolites for dairy cow ketosis, Ital. J. Anim. Sci. 15(3): 545-551.

Wang, Z., Song, Y., Sun, S., Zhao, C., Fu, S., Xia, C. & Bai, Y. (2022). Metabolite Comparison between serum and follicular fluid of dairy cows with inactive ovaries postpartum. Animals. 12: 285-300.

Wiltbank, M. C., Garcia-Guerra A., Carvalho P. D., Hackbart K. S., Bender R. W., Souza A. H., Toledo M. Z., Baez G. M., Surjus R. & Sartori R. (2014). Effects of energy and protein nutrition in the dam on embryonic development. Anim Reprod. 11: 168-182.

Wiltbank, M. C., Souza, A. H., Giordano, J. O., Nascimento, A. B., Vasconcelos, J. M., Pereira, M. H. C., Fricke, P. M., Surjus, R. S., Zinsly, F. C. S., Carvalho, P. D., Bender, R. W. & Sartori, R. (2012). Positive and negative effects of progesterone during timed AI protocols in lactating dairy cattle. Anim Reprod. 9(3): 231-241.

Van den Top, A. M., Van Tol, A., Jansen, H., Geelen, M. J. & Beynen, A. C. (2005). Fatty liver in dairy cows post partum is associated with decreased concentration of plasma triacylglycerols and decreased activity of lipoprotein lipase in adipocytes. J Dairy Res. 72(2): 129-137.

Vernon, R. G. (2005). Lipid metabolism during lactation: A review of adipose tissue-liver interactions and the development of fatty liver. J Dairy Res. 72: 460-469.

Yáñez, U., Herradón, P.G., Becerra, J. J., Peña, A.I. & Quintela, L.A. (2022). Relationship between postpartum metabolic status and subclinical endometritis in dairy cattle. Animals. 12: 242-258.

Downloads

เผยแพร่แล้ว

2023-06-09