Aldol condensation of acetone and butyraldehyde over alkali supported hydrotalcite catalysts
Keywords:
Hydrotalcite-derived oxides, Thermal treatment, Alkali metal incorporation, Aldol condensationAbstract
Thermally treated hydrotalcite prepared at different temperatures (HT400, HT600 and HT 800) and alkali metal (Li, K and Cs) incorporated on HT400 catalysts have been studied for their surface properties and catalytic activity/selectivity in the continuous gas phase aldol condensation reaction between acetone and butyraldehyde. The synthesized catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and temperature-programmed desorption of carbon dioxide (CO2-TPD). The catalytic activity of the thermally treated hydrotalcite increases in the following order: HT400 < HT600 < HT800. The cross- and self-aldol condensation reactions give a mixture of multiple condensation products. In the aldol condensation reaction between acetone and butyraldehyde using HT600 catalyst, the self-aldol reaction of butyraldehyde to form C8 products proceeded much faster than the cross-aldol reaction to form C7 products. After incorporation of lithium (1 mol%) with HT400 by impregnation, such catalyst can increase the catalytic activity. However, the lithium species may agglomerate to form relatively larger clusters upon increasing metal loading (5 and 10 mol%) leading to the lower conversion. Regarding the effect of metal, the catalytic activity of the alkali incorporated HT400 (10 mol%) decreases in the following order: 10Li/HT400 > 10Cs/HT400 > 10K/HT400. It suggests that the formation of the different metal species and cluster size can influence the catalytic activity, stability and selectivity of catalyst in aldol condensation reaction.
References
สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.). (2563). โมเดลเศรษฐกิจใหม่ BCG. ค้นจาก https://www.nstda.or.th/home/knowledge_post/bcg-by-nstda/
อาทิตย์ อัศวสุขี. (2559). ความรู้เบื้องต้นเกี่ยวกับการเร่งปฏิกิริยาเคมี. ใน อาทิตย์ อัศวสุขี, การเร่งปฏิกิริยาเคมี (น.101-121). กรุงเทพฯ: ทริปเพิ้ล กรุ๊ป.
Abelló, S., Medina, F., Tichit, D., Pérez-Ramírez, J., Rodríguez, X., Sueiras, J. E., and Cesteros, Y. (2005). Study of alkaline-doping agents on the performance of reconstructed Mg–Al hydrotalcites in aldol condensations. Applied Catalysis A: General, 281(1-2), 191–198. doi:10.1016/j.apcata.2004.11.037
Ausavasukhi, A., Krukrathok, N., and Singthaisong, P. (2023). Thermal transformation of copper incorporated hydrotalcite-derived oxides and their catalytic activity for ethanol dehydrogenation. Industrial and Engineering Chemistry, 117, 371–385. Doi:10.1016/j.jiec.2022.10.025
Benedictto, G. P., Sotelo, R. M., Dalla Costa, B. O., Fetter, G., and Basaldella, E. I. (2018). Potassium-containing hydroxylated hydrotalcite as efficient catalyst for the transesterification of sunflower oil. Materials Science, 53, 12828–12836. doi:10.1007/s10853-018-2581-0
Castro, Y. A., Ellis, J. T., Miller, C. D., and Sims, R. C. (2015). Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Applied Energy, 140, 14–19. doi:10.1016/j.apenergy.2014.11.045
Choudhary, V. R., Rane, V. H., and Pandit, M. Y. (1997). Comparison of alkali metal promoted MgO catalysts for their surface acidity/basicity and catalytic activity/selectivity in the oxidative coupling of methane. Chemical Technology & Biotechnology, 68(2), 177–186.
doi:10.1002/(sici)1097-4660(199702)68:2<177::aid-jctb645>3.0.co;2-u
Díez, V. K., Apesteguía, C. R., and Di Cosimo, J. I. (2006). Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. Catalysis, 240(2), 235–244. doi:10.1016/j.jcat.2006.04.003
FOODB. (2020). Showing Compound 2-Heptanone (FDB008055) Retrieved from https://foodb.ca/compounds/FDB008055
Hamilton, C. A., Jackson, S. D., and Kelly, G. J. (2004). Solid base catalysts and combined solid base hydrogenation catalysts for the aldol condensation of branched and linear aldehydes. Applied Catalysis A: General, 263(1), 63–70. doi:10.1016/j.apcata.2003.12.009
Ji, W., Chen, Y., and Kung, H. H. (1997). Vapor phase aldol condensation of acetaldehyde on metal oxide catalysts. Applied Catalysis A: General, 161(1-2), 93–104. doi:10.1016/s0926-860x(96)00390-0
Lestariningsih, T., Sabrina, Q., Ratri, C. R., and Lalasari, L. H. (2021). Brine water as lithium source in the synthesis of LiBOB electrolyte for Lithium-Ion battery application. Paper presented at the 4th Conference of International Seminar on Metallurgy and Materials.
Pischetola, C., Hesse, F., Bos, J. -W. G., and Cárdenas-Lizana, F. (2021). Effect of Lewis basicity on the continuous gas phase condensation of benzaldehyde with acetophenone over MgO. Applied Catalysis A: General, 623, 118277
Rode, E. J., Gee, P. E., Marquez, L. N., Uemura, T., and Bazargani, M. (1991). Aldol condensation of butanal over alkali metal zeolites. Catalysis Letters, 9(1-2), 103–113. doi:10.1007/bf00769088
Wiehn, M., Staggs, K., Wang, Y., and Nielsen, D. R. (2013). In situ butanol recovery from Clostridium acetobutylicum fermentations by expanded bed adsorption. Biotechnology Progress, 30(1), 68–78. doi:10.1002/btpr.1841
Xie, X., Su, H., Chen, J., Zuo, H., Tang, X., and Li, Y. (2018). Microwave dielectric properties of low-temperature-fired LiAlO2–Li2TiO3 composite ceramics with near-zero temperature coefficient. Materials Science: Materials in Electronics, 29, 17771–17776.
doi:10.1007/s10854-018-9884-4
Yang, X., Li, S., Huang, H., Li, J., Kobayashi, N., and Kubota, M. (2017). Effect of carbon nanoadditives on lithium hydroxide monohydrate-based composite materials for low temperature chemical heat storage. Energies, 10(5), 644. doi:10.3390/en10050644
Zhang, G., Zhang, H., Yang, D., Li, C., Peng, Z., and Zhang, S. (2016). Catalysts, kinetics and process optimization for the synthesis of methyl acrylate over Cs–P/γ-Al2O3. Catalysis Science & Technology, 6(16), 6417–6430. doi:10.1039/c6cy00620e
Zhang, S., Tao, L., Zhang, Y., Wang, Z., Gou, G., Jiang, M., and Zhou, Z. (2016). The role and mechanism of K2CO3 and Fe3O4 in the preparation of magnetic peanut shell based activated carbon. Powder Technology, 295, 152–160. doi:10.1016/j.powtec.2016.03.034
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Loei Rajabhat University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความที่ได้รับการตีพิมพ์
