ผลเฉลยของสมการไดโอแฟนไทน์ 6^x-n^y=z^2

Main Article Content

สุธน ตาดี

บทคัดย่อ

ในงานวิจัยนี้ได้ศึกษาสมการไดโอแฟนไทน์ gif.latex?6^{x}-n^{y}=z^{2}  เมื่อ gif.latex?x,y,z เป็นจำนวนเต็มที่ไม่เป็นลบ และ  gif.latex?n เป็นจำนวนเต็มบวก โดยที่ gif.latex?n\neq&space;1 และ gif.latex?n\equiv&space;1,3,5\left&space;(&space;mod8&space;\right&space;) โดยการใช้สมบัติพื้นฐานของสมภาค ผลการวิจัยพบว่า ผลเฉลยจำนวนเต็มที่ไม่เป็นลบของสมการไดโอแฟนไทน์ดังกล่าว คือ gif.latex?\left&space;(&space;n,x,y,z&space;\right&space;)\in&space;\left&space;\{&space;\left&space;(&space;n,0,0,0&space;\right&space;),\left&space;(&space;3,2,3,3&space;\right&space;),\left&space;(&space;5,1,1,1&space;\right&space;),\left&space;(&space;11,2,1,5&space;\right&space;),\left&space;(&space;27,2,1,3&space;\right&space;)&space;\right&space;\}

Article Details

ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Burshtein, N. (2019). A short note on solutions of the Diophantine equations 6^x+11^y=z^2 and 6^x-11^y=z^2 in positive integers x,y,z. Annals of Pure and Applied Mathematics, 20(2), 55-56.

Burshtein, N. (2020). All the solutions of the Diophantine equations 13^x-5^y=z^2 ,19^x-5^y=z^2 in positive integers x,y,z. Annals of Pure and Applied Mathematics, 22(2), 93-96.

Burton, D.M. (2010). Elementary number theory. 7th ed., New York: McGraw-Hill.

Gope, R.C. (2023). On the exponential Diophantine equation 27^x-11^y=z^2 . Journal of Physical Sciences, 28, 11-15.

Rao, C.G. (2022). On the exponential Diophantine equation 23^x-19^y=z^2 . Journal of Physical Sciences, 27, 1-4.

Siraworakun, A. and Tadee, S. (2024). All solutions of the Diophantine equation 25^x-7^y=z^2. International Journal of Mathematics and Computer Science, 19(3), 631-633.

Tadee, S. (2023a). A short note on two Diophantine equations 9^x-3^y=z^2 and 13^x-7^y=z^2. Journal of Mathematics and Informatics, 24, 23-25.

Tadee, S. (2023b). On the Diophantine equation 3^x-p^y=z^2 where p is prime. Journal of Science and Technology Thonburi University, 7(1), 1-6.

Tadee, S. and Laomalaw, N. (2023). On the Diophantine equation (p+2)^x-p^y=z^2 , where p is prime and p≡5(mod 24). International Journal of Mathematics and Computer Science, 18(2), 149-152.

Thongnak, S., Chuayjan, W. & Kaewong, T. (2019). On the exponential Diophantine equation 2^x-3^y=z^2. Southeast-Asian Journal of Sciences, 7(1), 1-4.

Thongnak, S., Kaewong, T. & Chuayjan, W. (2024). On the exponential Diophantine equation 5^x-3^y=z^2. International Journal of Mathematics and Computer Science, 19(1), 99-102.