On Bi-Bases of Semihypergroups
Main Article Content
Abstract
The aim of this paper is to study the concept of bi-bases of a semihypergroup. The notions of bi-base of semihypergroups are introduced and described. The results obtained extend the results on semigroup.
Article Details
References
Anvariyeh, S. M., Mirvakili, S., and Davvaz, B. (2010). On $Gamma-$hyperideals in $Gamma-$Semihypergroups, Carpathian Journal of Mathematics, 26 (1), p. 11 – 23.
Changphas, T., and Summaprab, P. (2014). On Two-Sided Bases of An Ordered Semigroup, Quasigroups and Related Systems, 22, p. 59 − 66.
Fabrici, I. (1972). One-Sided Bases of Semigroups, Matematický Casopis, 22 (4), p. 286 − 290.
Fabrici, I. (1975). Two-Sided Bases of Semigroups, Matematický Casopis, 25 (2), p. 173 − 178.
Jafarabadi, H. M., Sarmin, H., and Molaei, M. R. (2012). Completely Simple and Regular Semi Hypergroups, Bulletin of the Malaysian Mathematical Science Society, 35 (2), p. 335 – 343.
Kehayopulu, N. (2018). On Ordered Hypersemigroups Given by A Table of Multiplication and A Figure, Turkish Journal of Mathematics, 42, p. 2045 - 2060.
Kummoon, P., and Changphas, T. (2017). On Bi-Bases of A Semigroup, Quasigroups and Related Systems, 25, p. 87 − 94.
Kummoon, P., and Changphas, T. (2017). On Bi-Bases of $Gamma-$Semigroup. Thai Journal of Mathematics, Special issue: Annual Meeting in Mathematics 2017,
p. 75 − 86.
Marty, F. (1934). Sur une Generalization de la Notion de Groupe, the 8th Congress Math. Scandenave. Stockholm.
Tamura, T. (1955). One-Sided Bases and Translations of A Semigroup, Mathematica Japonica, 3, p. 137 − 141.