Finding The Number of Spanning Trees on The Tricyclic Graph

Main Article Content

Padtaya Meesuk
Nirutt Pipattanajinda

Abstract

For each  equation  and a connected graph equation of order equation  is said to be a equation-cyclic graph if equation is a graph with size equation and a 3-cyclic graph is said to be a tricyclic graph. In this paper, we find the number of spanning trees on the tricyclic graph, considering 4 types from the number of cycles. Then use the counting techniques to find the number of spanning trees on the tricyclic graph of each type.


Keywords:  Spanning tree, Number of spanning trees of graph, Tricyclic

Article Details

How to Cite
Meesuk, P., & Pipattanajinda, N. (2024). Finding The Number of Spanning Trees on The Tricyclic Graph. Mathematical Journal by The Mathematical Association of Thailand Under The Patronage of His Majesty The King, 69(712), 28–42. retrieved from https://ph02.tci-thaijo.org/index.php/MJMATh/article/view/241180
Section
Research Article

References

นิรุตติ์ พิพรรธนจินดา. (2560). ทฤษฎีกราฟเบื้องต้น. กำแแพงเพชร: มหาวิทยาลัยราชภัฏกำแพงเพชร.

Pipattanajinda, N. (2017). Introduction to graph theory. Kampheng Phet: Kamphaeng Phet Rajabhat University.

ปัฐยา มีสุข และ นิรุตติ์ พิพรรธนจินดา. (2563). สูตรการหาจํานวนต้นไม้แผ่ทั่วของกราฟ

-วัฏจักร. วารสารคณิตศาสตร์ราชภัฏ. 5 (1), น. 23 – 34.

Meesuk, M., and Pipattanajinda, N. (2020). A Formula for Finding The Number of Spanning Trees on The Bicyclic Graph. Rajabhat Mathematics Journal. 5 (1), p. 23 – 34.

Abu-Sbeih, M. Z. (1990). On The Number of Spanning Tree of K_n and K_(n,m). Discrete Mathematics, 84 (2), p. 205 – 207.

Cayley, A. (1889). A Theorem on Trees, Quart. J. Pure Appl. Math. 23, p. 376 – 378.

Kirchhoff, G. (1847). Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird, Annalen der Physik, 148, p. 497 – 508.

Li, J. and Shiu, W. C. (2014). The Number of Spanning Trees of Composite Graphs. J. of Combi. Math. and Combi. Compu. 89, p. 45 – 52.

Li, J., Shiu, W. C. and Chang, A. (2010). The Number of Spanning Trees of

A Graph. Appl. Math. Letters. 23 (3), p. 286 – 290.