A Ratio on The Cut Line of Butterfly’s Wings on A Circle
Main Article Content
Abstract
In this paper, we propose a relation of a ratio on the cut line of butterfly’s wings on a circle using the basic properties of triangular areas to prove it. The result can be used to prove the original butterfly theorem.
Article Details
References
ภัคคินี ชิตสกุล. (2560). ทฤษฎีบทรูปผีเสื้อ. วารสารคณิตศาสตร์, 62 (691), น. 13 - 20.
Chitsakul, P. (2017). The Butterfly Theorem. Mathematical Journal, 62 (691), p. 13 - 20.
Celli, M. (2016). A Proof of The Butterfly Theorem Using the Similarity Factor of The Two Wings. Forum Geometricorum, 16, p. 337 - 338.
Cerin, Z. (2006). On Butterflies Inscribed in A Quadrilateral. Forum Geometricorum, 6, p. 241 - 246.
Donolato, C. (2016). A Proof of The Butterfly Theorem Using Ceva’s Theorem. Forum Geometricorum, 16, p. 185 - 186.
Nguyen, T. D. (2017). Three Synthetic Proofs of The Butterfly Theorem. Forum Geometricorum, 17, p. 355 - 358.
Sledge, J. (1973). A Generalization of The Butterfly Theorem, J. of Undergraduate Math, 5, p. 3 – 4.
Tran, Q. H. (2016). Another Synthetic Proof of The Butterfly Theorem Using The Midlinein Triangle. Forum Geometricorum, 16, p. 345 - 346.
Volenec, V. (2000). A Generalization of The Butterfly Theorem. Mathematical Communications, 5, p. 157 - 160.
Zvonko, C. (2001). A Generalization of The Butterfly Theorem from Circles to Conics. Mathematical Communications, 6, p. 161 - 164.