A Ratio on The Cut Line of Butterfly’s Wings on A Circle

Main Article Content

Annop Kaewkhao
Warachat Khuntong

Abstract

In this paper, we propose a relation of a ratio on the cut line of butterfly’s wings on a circle using the basic properties of triangular areas to prove it. The result can be used to prove the original butterfly theorem.

Article Details

How to Cite
Kaewkhao, A., & Khuntong, W. (2021). A Ratio on The Cut Line of Butterfly’s Wings on A Circle. Mathematical Journal by The Mathematical Association of Thailand Under The Patronage of His Majesty The King, 66(705), 18–24. retrieved from https://ph02.tci-thaijo.org/index.php/MJMATh/article/view/242422
Section
Academic Article

References

ภัคคินี ชิตสกุล. (2560). ทฤษฎีบทรูปผีเสื้อ. วารสารคณิตศาสตร์, 62 (691), น. 13 - 20.

Chitsakul, P. (2017). The Butterfly Theorem. Mathematical Journal, 62 (691), p. 13 - 20.

Celli, M. (2016). A Proof of The Butterfly Theorem Using the Similarity Factor of The Two Wings. Forum Geometricorum, 16, p. 337 - 338.

Cerin, Z. (2006). On Butterflies Inscribed in A Quadrilateral. Forum Geometricorum, 6, p. 241 - 246.

Donolato, C. (2016). A Proof of The Butterfly Theorem Using Ceva’s Theorem. Forum Geometricorum, 16, p. 185 - 186.

Nguyen, T. D. (2017). Three Synthetic Proofs of The Butterfly Theorem. Forum Geometricorum, 17, p. 355 - 358.

Sledge, J. (1973). A Generalization of The Butterfly Theorem, J. of Undergraduate Math, 5, p. 3 – 4.

Tran, Q. H. (2016). Another Synthetic Proof of The Butterfly Theorem Using The Midlinein Triangle. Forum Geometricorum, 16, p. 345 - 346.

Volenec, V. (2000). A Generalization of The Butterfly Theorem. Mathematical Communications, 5, p. 157 - 160.

Zvonko, C. (2001). A Generalization of The Butterfly Theorem from Circles to Conics. Mathematical Communications, 6, p. 161 - 164.