A Combinatorial Proof of An Identity Involving Trigonometric Power Sums
Main Article Content
Abstract
Let be integers where . In this paper, we use a combinatorial proof to show that
by counting the number of solutions for the congruence where .
Article Details
References
กิตติกร นาคประสิทธิ์. (2548). การพิสูจน์เชิงการจัด. นิตยสารคณิตศาสตร์มายแมทส์, 1 (11), น. 22 – 25.
Nakprasit, K. (2005). Combinatorial Proof. My Maths: The Magazine of Mathematics, 1 (11), p. 22 – 25.
Beeler, R. A. (2015). How to Count: An Introduction to Combinatorics and Its Applications. New York: Springer.
Berndt, B. C. and Yeap, B. P. (2002). Explicit Evaluations and Reciprocity Theorems for Finite Trigonometric Sums. Advances in Applied Mathematics, 29 (3), p. 358 – 385.
Chu, W. and Marini, A. (1999). Partial Fraction and Trigonometric Identities. Advances in Applied Mathematics, 23, p. 115 – 175.
Chuan-Chong, C. and Khee-Meng, K. (1992). Principles and Technique in Combinatorics. Singapore: World Scientific Publishing.
Dowker, J. S. (1987). Casimir Effect Around A Cone. Physical Review D, 36 (10),
p. 3095 – 3101.
Dowker, J. S. (1989). Heat Kernel Expansion on A Generalized Cone. Journal of Mathematical Physics, 30 (4), p. 770 – 773.
Dowker, J. S. (1992). On Verlinde’s Formula for The Dimensions of Vector Bundles on Moduli Spaces. Journal of Physics A: Mathematical and General, 25 (9),
p. 2641 – 2648.
He, Y. (2020). Explicit Expressions for Finite Trigonometric Sums. Journal of Mathematical Analysis and Applications, 484 (1), Article 123702.
Lial, M. L., Hornsby, J., Schneider, D. I. and Daniels, C. J. (2017). College Algebra & Trigonometry (6th ed.). London: Pearson Education.
Merca, M. (2012). A Note on Cosine Power Sums. Journal of Integer Sequences, 15 (5), Article 12.5.3.