สมการไดโอเฟนไทน์ 8^x + 61^y = z^2 และ 8^x + 67^y = z^2
Main Article Content
บทคัดย่อ
ในงานวิจัยนี้ได้ศึกษาผลเฉลย (x, y, z) เมื่อ x, y และ z เป็นจำนวนเต็มที่ไม่เป็นลบของสมการไดโอเฟนไทน์ และ
โดยพบว่าสมการทั้งสองมีผลเฉลยเพียงผลเฉลยเดียว คือ (x, y, z) = (1, 0, 3)
Article Details
รูปแบบการอ้างอิง
Makate, N. (2019). สมการไดโอเฟนไทน์ 8^x + 61^y = z^2 และ 8^x + 67^y = z^2. วารสารคณิตศาสตร์ โดยสมาคมคณิตศาสตร์แห่งประเทศไทย ในพระบรมราชูปถัมภ์, 64(697), 24–29. สืบค้น จาก https://ph02.tci-thaijo.org/index.php/MJMATh/article/view/174756
ประเภทบทความ
Research Article
เอกสารอ้างอิง
[1] Chotchaisthit, S. (2012). On the Diophantine Equation 4^x + p^y = z^2 where p is a Prime Number. American Journal of Mathematics and Sciences, 1 (1), p. 191 - 193.
[2] Khan, Md. A. A., Rashid, A. and Uddin, Md. S. (2016). Non-Negative Integer Solutions of Two Diophantine Equations 2^x + 9^y = z^2 and 5^x + 9^y = z^2. Journal of Applied Mathematics and Physics, 4 (4), p. 762 - 765.
[3] Mihailescu, P. (2004). Primary Cyclotomic Units and a Proof of Catalan’s Conjecture. Journal fur die Reine und Angewandte Mathematik, 27, p. 167 - 195.
[4] Sroysang, B. (2012). More on the Diophantine Equation 8^x + 19^y = z^2. International Journal of Pure and Applied Mathematics, 81 (4), p. 601 - 604.
[5] Sroysang, B. (2013). More on the Diophantine Equation 2^x + 3^y = z^2. International Journal of Pure and Applied Mathematics, 84 (2), p. 133 - 137.
[6] Sroysang, B. (2014). More on the Diophantine Equation 8^x + 59^y = z^2. International Journal of Pure and Applied Mathematics, 91 (1), p. 139 - 142.
[7] Sroysang, B. (2013). On the Diophantine Equation 7^x + 8^y = z^2. International Journal of Pure and Applied Mathematics, 84 (1), p. 111 - 114.
[8] Sroysang, B. (2014). On the Diophantine Equation 8^x +13^y = z^2. International Journal of Pure and Applied Mathematics, 90 (1), p. 69 - 72.
[9] Suvarnamani, A. (2011). Solutions of the Diophantine Equation 2^x + p^y = z^2. International Journal of Mathematical Sciences and Applications, 1 (3), p. 1415-1419.
[2] Khan, Md. A. A., Rashid, A. and Uddin, Md. S. (2016). Non-Negative Integer Solutions of Two Diophantine Equations 2^x + 9^y = z^2 and 5^x + 9^y = z^2. Journal of Applied Mathematics and Physics, 4 (4), p. 762 - 765.
[3] Mihailescu, P. (2004). Primary Cyclotomic Units and a Proof of Catalan’s Conjecture. Journal fur die Reine und Angewandte Mathematik, 27, p. 167 - 195.
[4] Sroysang, B. (2012). More on the Diophantine Equation 8^x + 19^y = z^2. International Journal of Pure and Applied Mathematics, 81 (4), p. 601 - 604.
[5] Sroysang, B. (2013). More on the Diophantine Equation 2^x + 3^y = z^2. International Journal of Pure and Applied Mathematics, 84 (2), p. 133 - 137.
[6] Sroysang, B. (2014). More on the Diophantine Equation 8^x + 59^y = z^2. International Journal of Pure and Applied Mathematics, 91 (1), p. 139 - 142.
[7] Sroysang, B. (2013). On the Diophantine Equation 7^x + 8^y = z^2. International Journal of Pure and Applied Mathematics, 84 (1), p. 111 - 114.
[8] Sroysang, B. (2014). On the Diophantine Equation 8^x +13^y = z^2. International Journal of Pure and Applied Mathematics, 90 (1), p. 69 - 72.
[9] Suvarnamani, A. (2011). Solutions of the Diophantine Equation 2^x + p^y = z^2. International Journal of Mathematical Sciences and Applications, 1 (3), p. 1415-1419.